forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFastLED.cpp
275 lines (234 loc) · 6.44 KB
/
FastLED.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#define FASTLED_INTERNAL
#include "FastLED.h"
#if defined(__SAM3X8E__)
volatile uint32_t fuckit;
#endif
FASTLED_NAMESPACE_BEGIN
void *pSmartMatrix = NULL;
CFastLED FastLED;
CLEDController *CLEDController::m_pHead = NULL;
CLEDController *CLEDController::m_pTail = NULL;
static uint32_t lastshow = 0;
uint32_t _frame_cnt=0;
uint32_t _retry_cnt=0;
// uint32_t CRGB::Squant = ((uint32_t)((__TIME__[4]-'0') * 28))<<16 | ((__TIME__[6]-'0')*50)<<8 | ((__TIME__[7]-'0')*28);
CFastLED::CFastLED() {
// clear out the array of led controllers
// m_nControllers = 0;
m_Scale = 255;
m_nFPS = 0;
m_pPowerFunc = NULL;
m_nPowerData = 0xFFFFFFFF;
}
CLEDController &CFastLED::addLeds(CLEDController *pLed,
struct CRGB *data,
int nLedsOrOffset, int nLedsIfOffset) {
int nOffset = (nLedsIfOffset > 0) ? nLedsOrOffset : 0;
int nLeds = (nLedsIfOffset > 0) ? nLedsIfOffset : nLedsOrOffset;
pLed->init();
pLed->setLeds(data + nOffset, nLeds);
FastLED.setMaxRefreshRate(pLed->getMaxRefreshRate(),true);
return *pLed;
}
void CFastLED::show(uint8_t scale) {
// guard against showing too rapidly
while(m_nMinMicros && ((micros()-lastshow) < m_nMinMicros));
lastshow = micros();
// If we have a function for computing power, use it!
if(m_pPowerFunc) {
scale = (*m_pPowerFunc)(scale, m_nPowerData);
}
CLEDController *pCur = CLEDController::head();
while(pCur) {
uint8_t d = pCur->getDither();
if(m_nFPS < 100) { pCur->setDither(0); }
pCur->showLeds(scale);
pCur->setDither(d);
pCur = pCur->next();
}
countFPS();
}
int CFastLED::count() {
int x = 0;
CLEDController *pCur = CLEDController::head();
while( pCur) {
x++;
pCur = pCur->next();
}
return x;
}
CLEDController & CFastLED::operator[](int x) {
CLEDController *pCur = CLEDController::head();
while(x-- && pCur) {
pCur = pCur->next();
}
if(pCur == NULL) {
return *(CLEDController::head());
} else {
return *pCur;
}
}
void CFastLED::showColor(const struct CRGB & color, uint8_t scale) {
while(m_nMinMicros && ((micros()-lastshow) < m_nMinMicros));
lastshow = micros();
// If we have a function for computing power, use it!
if(m_pPowerFunc) {
scale = (*m_pPowerFunc)(scale, m_nPowerData);
}
CLEDController *pCur = CLEDController::head();
while(pCur) {
uint8_t d = pCur->getDither();
if(m_nFPS < 100) { pCur->setDither(0); }
pCur->showColor(color, scale);
pCur->setDither(d);
pCur = pCur->next();
}
countFPS();
}
void CFastLED::clear(bool writeData) {
if(writeData) {
showColor(CRGB(0,0,0), 0);
}
clearData();
}
void CFastLED::clearData() {
CLEDController *pCur = CLEDController::head();
while(pCur) {
pCur->clearLedData();
pCur = pCur->next();
}
}
void CFastLED::delay(unsigned long ms) {
unsigned long start = millis();
do {
#ifndef FASTLED_ACCURATE_CLOCK
// make sure to allow at least one ms to pass to ensure the clock moves
// forward
::delay(1);
#endif
show();
yield();
}
while((millis()-start) < ms);
}
void CFastLED::setTemperature(const struct CRGB & temp) {
CLEDController *pCur = CLEDController::head();
while(pCur) {
pCur->setTemperature(temp);
pCur = pCur->next();
}
}
void CFastLED::setCorrection(const struct CRGB & correction) {
CLEDController *pCur = CLEDController::head();
while(pCur) {
pCur->setCorrection(correction);
pCur = pCur->next();
}
}
void CFastLED::setDither(uint8_t ditherMode) {
CLEDController *pCur = CLEDController::head();
while(pCur) {
pCur->setDither(ditherMode);
pCur = pCur->next();
}
}
//
// template<int m, int n> void transpose8(unsigned char A[8], unsigned char B[8]) {
// uint32_t x, y, t;
//
// // Load the array and pack it into x and y.
// y = *(unsigned int*)(A);
// x = *(unsigned int*)(A+4);
//
// // x = (A[0]<<24) | (A[m]<<16) | (A[2*m]<<8) | A[3*m];
// // y = (A[4*m]<<24) | (A[5*m]<<16) | (A[6*m]<<8) | A[7*m];
//
// // pre-transform x
// t = (x ^ (x >> 7)) & 0x00AA00AA; x = x ^ t ^ (t << 7);
// t = (x ^ (x >>14)) & 0x0000CCCC; x = x ^ t ^ (t <<14);
//
// // pre-transform y
// t = (y ^ (y >> 7)) & 0x00AA00AA; y = y ^ t ^ (t << 7);
// t = (y ^ (y >>14)) & 0x0000CCCC; y = y ^ t ^ (t <<14);
//
// // final transform
// t = (x & 0xF0F0F0F0) | ((y >> 4) & 0x0F0F0F0F);
// y = ((x << 4) & 0xF0F0F0F0) | (y & 0x0F0F0F0F);
// x = t;
//
// B[7*n] = y; y >>= 8;
// B[6*n] = y; y >>= 8;
// B[5*n] = y; y >>= 8;
// B[4*n] = y;
//
// B[3*n] = x; x >>= 8;
// B[2*n] = x; x >>= 8;
// B[n] = x; x >>= 8;
// B[0] = x;
// // B[0]=x>>24; B[n]=x>>16; B[2*n]=x>>8; B[3*n]=x>>0;
// // B[4*n]=y>>24; B[5*n]=y>>16; B[6*n]=y>>8; B[7*n]=y>>0;
// }
//
// void transposeLines(Lines & out, Lines & in) {
// transpose8<1,2>(in.bytes, out.bytes);
// transpose8<1,2>(in.bytes + 8, out.bytes + 1);
// }
extern int noise_min;
extern int noise_max;
void CFastLED::countFPS(int nFrames) {
static int br = 0;
static uint32_t lastframe = 0; // millis();
if(br++ >= nFrames) {
uint32_t now = millis();
now -= lastframe;
if( now == 0 ) {
now = 1; // prevent division by zero below
}
m_nFPS = (br * 1000) / now;
br = 0;
lastframe = millis();
}
}
void CFastLED::setMaxRefreshRate(uint16_t refresh, bool constrain) {
if(constrain) {
// if we're constraining, the new value of m_nMinMicros _must_ be higher than previously (because we're only
// allowed to slow things down if constraining)
if(refresh > 0) {
m_nMinMicros = ( (1000000/refresh) > m_nMinMicros) ? (1000000/refresh) : m_nMinMicros;
}
} else if(refresh > 0) {
m_nMinMicros = 1000000 / refresh;
} else {
m_nMinMicros = 0;
}
}
extern "C" int atexit(void (* /*func*/ )()) { return 0; }
#ifdef FASTLED_NEEDS_YIELD
extern "C" void yield(void) { }
#endif
#ifdef NEED_CXX_BITS
namespace __cxxabiv1
{
#if !defined(ESP8266) && !defined(ESP32)
extern "C" void __cxa_pure_virtual (void) {}
#endif
/* guard variables */
/* The ABI requires a 64-bit type. */
__extension__ typedef int __guard __attribute__((mode(__DI__)));
extern "C" int __cxa_guard_acquire (__guard *) __attribute__((weak));
extern "C" void __cxa_guard_release (__guard *) __attribute__((weak));
extern "C" void __cxa_guard_abort (__guard *) __attribute__((weak));
extern "C" int __cxa_guard_acquire (__guard *g)
{
return !*(char *)(g);
}
extern "C" void __cxa_guard_release (__guard *g)
{
*(char *)g = 1;
}
extern "C" void __cxa_guard_abort (__guard *)
{
}
}
#endif
FASTLED_NAMESPACE_END