From 7d9f10bbe7985bd47acf6ec3397335dc159218ff Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Thu, 9 Jan 2025 01:04:46 +0800 Subject: [PATCH] [Misc] Move some model utils into vision file (#11848) Signed-off-by: DarkLight1337 --- vllm/model_executor/models/clip.py | 5 +- vllm/model_executor/models/pixtral.py | 5 +- vllm/model_executor/models/qwen2_vl.py | 3 +- vllm/model_executor/models/siglip.py | 5 +- vllm/model_executor/models/utils.py | 37 +----------- vllm/model_executor/models/vision.py | 83 +++++++++++++++++++++++++- vllm/multimodal/inputs.py | 4 +- vllm/multimodal/utils.py | 44 -------------- 8 files changed, 94 insertions(+), 92 deletions(-) diff --git a/vllm/model_executor/models/clip.py b/vllm/model_executor/models/clip.py index 1bde45cb140cb..dd69f6c9a5aff 100644 --- a/vllm/model_executor/models/clip.py +++ b/vllm/model_executor/models/clip.py @@ -20,11 +20,10 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.multimodal.utils import (cached_get_tokenizer, consecutive_placeholder_ranges, - repeat_and_pad_placeholder_tokens, - resolve_visual_encoder_outputs) + repeat_and_pad_placeholder_tokens) from vllm.sequence import SequenceData -from .vision import VisionEncoderInfo +from .vision import VisionEncoderInfo, resolve_visual_encoder_outputs def get_clip_patch_grid_length(*, image_size: int, patch_size: int) -> int: diff --git a/vllm/model_executor/models/pixtral.py b/vllm/model_executor/models/pixtral.py index b74bb3c8a3f88..37b9989e489ec 100644 --- a/vllm/model_executor/models/pixtral.py +++ b/vllm/model_executor/models/pixtral.py @@ -31,14 +31,13 @@ from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs from vllm.multimodal.inputs import NestedTensors, PlaceholderRange from vllm.multimodal.utils import (cached_get_tokenizer, - consecutive_placeholder_ranges, - resolve_visual_encoder_outputs) + consecutive_placeholder_ranges) from vllm.sequence import IntermediateTensors, SequenceData from .interfaces import SupportsMultiModal, SupportsPP from .utils import (init_vllm_registered_model, maybe_prefix, merge_multimodal_embeddings) -from .vision import VisionEncoderInfo +from .vision import VisionEncoderInfo, resolve_visual_encoder_outputs try: from xformers import ops as xops diff --git a/vllm/model_executor/models/qwen2_vl.py b/vllm/model_executor/models/qwen2_vl.py index 8537fec854b6d..76a810e8f0c20 100644 --- a/vllm/model_executor/models/qwen2_vl.py +++ b/vllm/model_executor/models/qwen2_vl.py @@ -66,8 +66,9 @@ from vllm.transformers_utils.config import uses_mrope from .interfaces import SupportsLoRA, SupportsMultiModal, SupportsPP -from .utils import (AutoWeightsLoader, WeightsMapper, get_vit_attn_backend, +from .utils import (AutoWeightsLoader, WeightsMapper, init_vllm_registered_model, maybe_prefix) +from .vision import get_vit_attn_backend logger = init_logger(__name__) diff --git a/vllm/model_executor/models/siglip.py b/vllm/model_executor/models/siglip.py index 7ea177e94afc0..cca42842bc06e 100644 --- a/vllm/model_executor/models/siglip.py +++ b/vllm/model_executor/models/siglip.py @@ -24,11 +24,10 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.multimodal.utils import (cached_get_tokenizer, consecutive_placeholder_ranges, - repeat_and_pad_placeholder_tokens, - resolve_visual_encoder_outputs) + repeat_and_pad_placeholder_tokens) from vllm.sequence import SequenceData -from .vision import VisionEncoderInfo +from .vision import VisionEncoderInfo, resolve_visual_encoder_outputs def get_siglip_patch_grid_length(*, image_size: int, patch_size: int) -> int: diff --git a/vllm/model_executor/models/utils.py b/vllm/model_executor/models/utils.py index 4ed3b237ae0e2..43b3c973c97b8 100644 --- a/vllm/model_executor/models/utils.py +++ b/vllm/model_executor/models/utils.py @@ -8,16 +8,12 @@ from torch.func import functional_call from transformers import PretrainedConfig -import vllm.envs as envs -from vllm.attention.selector import (backend_name_to_enum, - get_global_forced_attn_backend) from vllm.config import VllmConfig from vllm.logger import init_logger from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.multimodal import MultiModalPlaceholderMap, NestedTensors -from vllm.platforms import _Backend, current_platform from vllm.sequence import IntermediateTensors -from vllm.utils import is_pin_memory_available, print_warning_once +from vllm.utils import is_pin_memory_available logger = init_logger(__name__) @@ -612,37 +608,6 @@ def make_empty_intermediate_tensors( return make_empty_intermediate_tensors -def get_vit_attn_backend(support_fa: bool = False) -> _Backend: - """ - Get the available attention backend for Vision Transformer. - """ - # TODO(Isotr0py): Remove `support_fa` after support FA for all ViTs attn. - selected_backend: Optional[_Backend] = get_global_forced_attn_backend() - if selected_backend is None: - backend_by_env_var: Optional[str] = envs.VLLM_ATTENTION_BACKEND - if backend_by_env_var is not None: - selected_backend = backend_name_to_enum(backend_by_env_var) - if selected_backend is None: - # For Volta and Turing GPUs, use xformers instead. - device_available = current_platform.has_device_capability(80) - if device_available and support_fa: - from transformers.utils import is_flash_attn_2_available - if is_flash_attn_2_available(): - selected_backend = _Backend.FLASH_ATTN - else: - print_warning_once( - "Current `vllm-flash-attn` has a bug inside vision module, " - "so we use xformers backend instead. You can run " - "`pip install flash-attn` to use flash-attention backend.") - selected_backend = _Backend.XFORMERS - elif current_platform.is_cpu() or current_platform.is_rocm(): - # ROCM doesn't support xformers - selected_backend = _Backend.TORCH_SDPA - else: - selected_backend = _Backend.XFORMERS - return selected_backend - - def maybe_prefix(prefix: str, name: str) -> str: """Add a prefix to a name if the prefix is non-empty. diff --git a/vllm/model_executor/models/vision.py b/vllm/model_executor/models/vision.py index 8516c9f7066f7..e6a9e153d9107 100644 --- a/vllm/model_executor/models/vision.py +++ b/vllm/model_executor/models/vision.py @@ -1,8 +1,15 @@ from abc import ABC, abstractmethod -from typing import Final, Generic, Protocol, TypeVar +from typing import Final, Generic, Optional, Protocol, TypeVar, Union +import torch from transformers import PretrainedConfig +import vllm.envs as envs +from vllm.attention.selector import (backend_name_to_enum, + get_global_forced_attn_backend) +from vllm.platforms import _Backend, current_platform +from vllm.utils import print_warning_once + _C = TypeVar("_C", bound=PretrainedConfig) @@ -60,3 +67,77 @@ def get_vision_encoder_info( msg = f"Unsupported vision config: {type(vision_config)}" raise NotImplementedError(msg) + + +def get_vit_attn_backend(support_fa: bool = False) -> _Backend: + """ + Get the available attention backend for Vision Transformer. + """ + # TODO(Isotr0py): Remove `support_fa` after support FA for all ViTs attn. + selected_backend: Optional[_Backend] = get_global_forced_attn_backend() + if selected_backend is None: + backend_by_env_var: Optional[str] = envs.VLLM_ATTENTION_BACKEND + if backend_by_env_var is not None: + selected_backend = backend_name_to_enum(backend_by_env_var) + if selected_backend is None: + # For Volta and Turing GPUs, use xformers instead. + device_available = current_platform.has_device_capability(80) + if device_available and support_fa: + from transformers.utils import is_flash_attn_2_available + if is_flash_attn_2_available(): + selected_backend = _Backend.FLASH_ATTN + else: + print_warning_once( + "Current `vllm-flash-attn` has a bug inside vision module, " + "so we use xformers backend instead. You can run " + "`pip install flash-attn` to use flash-attention backend.") + selected_backend = _Backend.XFORMERS + elif current_platform.is_cpu() or current_platform.is_rocm(): + # ROCM doesn't support xformers + selected_backend = _Backend.TORCH_SDPA + else: + selected_backend = _Backend.XFORMERS + return selected_backend + + +def resolve_visual_encoder_outputs( + encoder_outputs: Union[torch.Tensor, list[torch.Tensor]], + feature_sample_layers: Optional[list[int]], + post_layer_norm: Optional[torch.nn.LayerNorm], + max_possible_layers: int, +) -> torch.Tensor: + """Given the outputs a visual encoder module that may correspond to the + output of the last layer, or a list of hidden states to be stacked, + handle post normalization and resolve it into a single output tensor. + + Args: + encoder_outputs: Output of encoder's last layer or all hidden states. + feature_sample_layers: Optional layer indices to grab from the encoder + outputs; if provided, encoder outputs must be a list. + post_layer_norm: Post norm to apply to the output of the encoder. + max_possible_layers: Total layers in the fully loaded visual encoder. + + """ + if feature_sample_layers is None: + if post_layer_norm is not None: + return post_layer_norm(encoder_outputs) + return encoder_outputs + + # Get the hidden states corresponding to the layer indices. + # Negative values are relative to the full visual encoder, + # so offset them depending on how many layers were loaded. + # NOTE: this assumes that encoder_outputs contains a list + # of hidden states in the same order as the encoder layers + # that produced them. + offset = max_possible_layers - len(encoder_outputs) + hs_pool = [ + encoder_outputs[layer_idx] + if layer_idx >= 0 else encoder_outputs[layer_idx + offset] + for layer_idx in feature_sample_layers + ] + + # Apply post-norm on the final hidden state if we are using it + uses_last_layer = feature_sample_layers[-1] in (len(hs_pool) - 1, -1) + if post_layer_norm is not None and uses_last_layer: + hs_pool[-1] = post_layer_norm(encoder_outputs) + return torch.cat(hs_pool, dim=-1) diff --git a/vllm/multimodal/inputs.py b/vllm/multimodal/inputs.py index d542461874866..8680e4175593b 100644 --- a/vllm/multimodal/inputs.py +++ b/vllm/multimodal/inputs.py @@ -99,6 +99,8 @@ class MultiModalDataBuiltins(TypedDict, total=False): MultiModalDataDict: TypeAlias = Mapping[str, ModalityData[Any]] """ A dictionary containing an entry for each modality type to input. + +The built-in modalities are defined by :class:`MultiModalDataBuiltins`. """ @@ -485,7 +487,7 @@ def get_items(self, modality: str) -> Sequence[MultiModalKwargsItem]: MultiModalPlaceholderDict = Mapping[str, Sequence[PlaceholderRange]] """ -A dictionary containing placeholder ranges. +A dictionary containing placeholder ranges for each modality. """ diff --git a/vllm/multimodal/utils.py b/vllm/multimodal/utils.py index f4a514ba55d0c..1c6bbf77b926f 100644 --- a/vllm/multimodal/utils.py +++ b/vllm/multimodal/utils.py @@ -5,7 +5,6 @@ import numpy as np import numpy.typing as npt -import torch from PIL import Image import vllm.envs as envs @@ -285,49 +284,6 @@ def encode_video_base64(frames: npt.NDArray) -> str: return video_io.encode_base64(frames) -def resolve_visual_encoder_outputs( - encoder_outputs: Union[torch.Tensor, list[torch.Tensor]], - feature_sample_layers: Optional[list[int]], - post_layer_norm: Optional[torch.nn.LayerNorm], - max_possible_layers: int, -) -> torch.Tensor: - """Given the outputs a visual encoder module that may correspond to the - output of the last layer, or a list of hidden states to be stacked, - handle post normalization and resolve it into a single output tensor. - - Args: - encoder_outputs: Output of encoder's last layer or all hidden states. - feature_sample_layers: Optional layer indices to grab from the encoder - outputs; if provided, encoder outputs must be a list. - post_layer_norm: Post norm to apply to the output of the encoder. - max_possible_layers: Total layers in the fully loaded visual encoder. - - """ - if feature_sample_layers is None: - if post_layer_norm is not None: - return post_layer_norm(encoder_outputs) - return encoder_outputs - - # Get the hidden states corresponding to the layer indices. - # Negative values are relative to the full visual encoder, - # so offset them depending on how many layers were loaded. - # NOTE: this assumes that encoder_outputs contains a list - # of hidden states in the same order as the encoder layers - # that produced them. - offset = max_possible_layers - len(encoder_outputs) - hs_pool = [ - encoder_outputs[layer_idx] - if layer_idx >= 0 else encoder_outputs[layer_idx + offset] - for layer_idx in feature_sample_layers - ] - - # Apply post-norm on the final hidden state if we are using it - uses_last_layer = feature_sample_layers[-1] in (len(hs_pool) - 1, -1) - if post_layer_norm is not None and uses_last_layer: - hs_pool[-1] = post_layer_norm(encoder_outputs) - return torch.cat(hs_pool, dim=-1) - - # Utilities for input processors _T = TypeVar("_T", str, int)