forked from polyusmart/Doctor-Recommendation
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathembed.py
executable file
·146 lines (133 loc) · 6.34 KB
/
embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import json
import math
import os
import numpy as np
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BertModel, BertTokenizer
# from sklearn.feature_extraction.text import TfidfVectorizer
parser = argparse.ArgumentParser()
parser.add_argument('-seed', default=2021, type=int)
parser.add_argument('-model', default='bert', type=str)
parser.add_argument('-load_sl_model', default=1, type=int)
args = parser.parse_args()
# set you available gpus
# os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
# os.environ['CUDA_VISIBLE_DEVICES'] = '1,2'
np.random.seed(args.seed)
if args.model == 'bert':
torch.manual_seed(args.seed)
n_gpu = torch.cuda.device_count()
print('gpu num: ', n_gpu)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def bert_sent_embed(model, tokenizer, device, id_content, output_path):
con_emb_dict = {}
for idx, content in tqdm(id_content.items(), desc=output_path):
input_ids = torch.tensor([tokenizer.encode(str(content))])
if len(input_ids[0].numpy().tolist()) > 512:
input_ids = torch.from_numpy(np.array(input_ids[0].numpy().tolist()[0:512])).reshape(1, -1).type(torch.LongTensor)
input_ids = input_ids.to(device)
with torch.no_grad():
features = model(input_ids)
con_emb_dict[idx] = features[1].cpu().numpy()[0].tolist()
with open(output_path, 'w') as f:
json.dump(con_emb_dict, f, ensure_ascii=False)
# def bert_dialog_turn_embed(model, tokenizer, device, dialogs, output_path):
# turns_emb = {}
# for idx, turns in tqdm(dialogs.items(), desc = output_path):
# turns_emb[idx] = []
# for turn in turns:
# input_ids = torch.tensor([tokenizer.encode(turn)])
# if len(input_ids[0].numpy().tolist()) > 512:
# input_ids = torch.from_numpy(np.array(input_ids[0].numpy().tolist()[0:512])).reshape(1, -1).type(torch.LongTensor)
# input_ids = input_ids.to(device)
# with torch.no_grad():
# features = model(input_ids)
# turns_emb[idx].append(features[1].cpu().numpy()[0].tolist())
# with open(output_path, 'w') as f:
# f.write(json.dumps(turns_emb, ensure_ascii=False))
# def tfidf_embed(id_texts, output_path):
# with open('./stopwords.txt', 'r', encoding='utf-8') as f:
# stopwords = [line.strip() for line in f.readlines()]
# splited_words_texts = []
# for text in tqdm(id_texts.values(), desc='spliting words'):
# words = [word for word in list(jieba.cut(text)) if word not in stopwords]
# splited_words_texts.append(re.sub(r'[0-9]', '', ' '.join(words)))
# vectorizer = TfidfVectorizer(min_df=10, max_df=150)
# vectors = vectorizer.fit_transform(splited_words_texts)
# feature_names = vectorizer.get_feature_names()
# dense = vectors.todense()
# denselist = dense.tolist()
# df = pd.DataFrame(denselist, columns=feature_names)
# con_emb_dict = {}
# for idx, id_text in enumerate(tqdm(id_texts.items())):
# text_id, _ = id_text
# embedding = df.loc[idx].tolist()
# con_emb_dict[text_id] = embedding
# with open(output_path, 'w', encoding = 'utf-8') as f:
# json.dump(con_emb_dict, f, ensure_ascii=False)
def chunks(list, n):
chunks_list = []
len_list = len(list)
step = math.ceil(len_list / n)
for i in range(0, n):
chunks_list.append(list[i*step:(i+1)*step])
return chunks_list
def main():
df = pd.read_csv(f'./dataset/embed.csv', delimiter='\t', encoding='utf-8')
df = df[['dr_id', 'dialog_id', 'q', 'parsed_dialog']]
id_profile = {}
with open(f'./dataset/dr_profile.jsonl', 'r', encoding='utf-8') as f:
for line in f.readlines():
line = json.loads(line)
id_profile[line['id']] = line['goodat'] # use goodat as doctor profile
id_q = dict(zip(df.dialog_id.tolist(), df.q.tolist()))
id_dialog = dict(zip(df.dialog_id.tolist(), df.parsed_dialog.tolist()))
if args.model == 'bert':
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
tokenizer = BertTokenizer.from_pretrained('./mc_bert_base/')
model = BertModel.from_pretrained('./mc_bert_base/')
model = model.to(device)
if args.load_sl_model:
model_path = './sl_best_model/sl_best_model.bin'
print('Load model from ' + model_path)
loaded_dict = torch.load(model_path)
model.state_dict = loaded_dict
embedding_path = './bert_embeddings'
else:
embedding_path = './bert_embeddings_wo_sl'
if not os.path.exists(embedding_path):
os.makedirs(embedding_path)
bert_sent_embed(model, tokenizer, device, id_profile, f'{embedding_path}/profile_embeddings.json')
bert_sent_embed(model, tokenizer, device, id_q, f'{embedding_path}/q_embeddings.json')
bert_sent_embed(model, tokenizer, device, id_dialog, f'{embedding_path}/dialog_embeddings.json')
# bert embed train dialogue turns in chunks with multithreading
# with open(f'./dataset/dialogs.json', 'r', encoding='utf-8') as f:
# dialogs = json.load(f)
# train_df = pd.read_csv(f'./dataset/train.csv', delimiter='\t', encoding='utf-8')
# train_dialog_ids = train_df.dialog_id.tolist()
# n = 20
# chunks_list = chunks(train_dialog_ids, n)
# threads_list = []
# for index in range(0, n):
# chunk_dialogs = {dialog_id: dialogs[dialog_id] for dialog_id in chunks_list[index]}
# thread = threading.Thread(
# target=bert_dialog_turn_embed,
# args=(model, tokenizer, device, index, chunk_dialogs, f'{embedding_path}/train_turns_emb{index}.json'))
# threads_list.append(thread)
# for t in threads_list:
# t.setDaemon(True)
# t.start()
# for t in threads_list:
# t.join()
# if args.model == 'tfidf':
# if not os.path.exists('./tfidf_embeddings'):
# os.makedirs(f'./tfidf_embeddings')
# tfidf_embed(id_profile, 'tfidf_embeddings/profile_embeddings.json')
# tfidf_embed(id_q, './tfidf_embeddings/q_embeddings.json')
# tfidf_embed(id_dialog, './tfidf_embeddings/dialog_embeddings.json')
if __name__ == '__main__':
main()