-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathunllama_token_clf.py
139 lines (117 loc) · 4.84 KB
/
unllama_token_clf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# -*- coding: utf-8 -*-
import sys
import json
import numpy as np
import evaluate
from datasets import load_dataset, Dataset, DatasetDict
from transformers import AutoTokenizer
from transformers import DataCollatorForTokenClassification
from transformers import TrainingArguments, Trainer
from peft import get_peft_model, LoraConfig, TaskType
from modeling_llama import UnmaskingLlamaForTokenClassification
def load_ontonotesv5():
ret = {}
for split_name in ['train', 'dev', 'test']:
data = []
with open(f'./data/ontonotesv5/{split_name}.jsonl', 'r') as reader:
for line in reader:
data.append(json.loads(line))
ret[split_name] = Dataset.from_list(data)
return DatasetDict(ret)
if len(sys.argv) != 3:
print('usage python %.py task model_size')
sys.exit()
task, model_size = sys.argv[1], sys.argv[2].lower()
print(f'handling task {task}')
epochs = 10
batch_size = 8
learning_rate = 1e-4
max_length = 64
lora_r = 12
if model_size == '7b':
model_id = 'NousResearch/Llama-2-7b-hf'
elif model_size == '13b':
model_id = 'NousResearch/Llama-2-13b-hf'
else:
raise NotImplementedError
tokenizer = AutoTokenizer.from_pretrained(model_id)
seqeval = evaluate.load("seqeval")
if task == 'wnut_17':
ds = load_dataset("wnut_17")
label2id = { "O": 0, "B-corporation": 1, "I-corporation": 2, "B-creative-work": 3, "I-creative-work": 4, "B-group": 5, "I-group": 6, "B-location": 7, "I-location": 8, "B-person": 9, "I-person": 10, "B-product": 11, "I-product": 12, }
elif task == 'conll2003':
ds = load_dataset("conll2003")
label2id = {'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6, 'B-MISC': 7, 'I-MISC': 8}
elif task == 'ontonotesv5':
ds = load_ontonotesv5()
label2id = {'O': 0, 'B-NORP': 1, 'B-PERSON': 2, 'B-WORK_OF_ART': 3, 'B-QUANTITY': 4, 'B-EVENT': 5, 'B-DATE': 6, 'B-TIME': 7, 'B-PERCENT': 8, 'B-LANGUAGE': 9, 'B-ORG': 10, 'B-CARDINAL': 11, 'B-LAW': 12, 'B-GPE': 13, 'B-PRODUCT': 14, 'B-LOC': 15, 'B-MONEY': 16, 'B-ORDINAL': 17, 'B-FAC': 18}
else:
raise NotImplementedError
id2label = {v: k for k, v in label2id.items()}
label_list = list(label2id.keys()) # ds["train"].features[f"ner_tags"].feature.names
model = UnmaskingLlamaForTokenClassification.from_pretrained(
model_id, num_labels=len(label2id), id2label=id2label, label2id=label2id
).bfloat16()
peft_config = LoraConfig(task_type=TaskType.TOKEN_CLS, inference_mode=False, r=lora_r, lora_alpha=32, lora_dropout=0.1)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(examples["tokens"], is_split_into_words=True, padding='longest', max_length=max_length, truncation=True)
labels = []
for i, label in enumerate(examples[f"ner_tags"]):
word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word.
previous_word_idx = None
label_ids = []
for word_idx in word_ids: # Set the special tokens to -100.
if word_idx is None:
label_ids.append(-100)
elif word_idx != previous_word_idx: # Only label the first token of a given word.
label_ids.append(label[word_idx])
else:
label_ids.append(-100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
tokenized_ds = ds.map(tokenize_and_align_labels, batched=True)
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
def compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=2)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
results = seqeval.compute(predictions=true_predictions, references=true_labels)
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
training_args = TrainingArguments(
output_dir="my_awesome_ds_model",
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=epochs,
weight_decay=0.01,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
push_to_hub=False,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_ds["train"],
eval_dataset=tokenized_ds["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()