forked from rekon/keras-yolo2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend.py
340 lines (259 loc) · 12.7 KB
/
backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
from keras.models import Model
import tensorflow as tf
from keras.layers import Reshape, Activation, Conv2D, Input, MaxPooling2D, BatchNormalization, Flatten, Dense, Lambda
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.merge import concatenate
from keras.applications.mobilenet import MobileNet
from keras.applications import InceptionV3
from keras.applications.vgg16 import VGG16
from keras.applications.resnet50 import ResNet50
FULL_YOLO_BACKEND_PATH = "full_yolo_backend.h5" # should be hosted on a server
TINY_YOLO_BACKEND_PATH = "tiny_yolo_backend.h5" # should be hosted on a server
SQUEEZENET_BACKEND_PATH = "squeezenet_backend.h5" # should be hosted on a server
MOBILENET_BACKEND_PATH = "mobilenet_backend.h5" # should be hosted on a server
INCEPTION3_BACKEND_PATH = "inception_backend.h5" # should be hosted on a server
VGG16_BACKEND_PATH = "vgg16_backend.h5" # should be hosted on a server
RESNET50_BACKEND_PATH = "resnet50_backend.h5" # should be hosted on a server
class BaseFeatureExtractor(object):
"""docstring for ClassName"""
# to be defined in each subclass
def __init__(self, input_size):
raise NotImplementedError("error message")
# to be defined in each subclass
def normalize(self, image):
raise NotImplementedError("error message")
def get_output_shape(self):
return self.feature_extractor.get_output_shape_at(-1)[1:3]
def extract(self, input_image):
return self.feature_extractor(input_image)
class FullYoloFeature(BaseFeatureExtractor):
"""docstring for ClassName"""
def __init__(self, input_size):
input_image = Input(shape=(input_size, input_size, 3))
# the function to implement the orgnization layer (thanks to github.com/allanzelener/YAD2K)
def space_to_depth_x2(x):
return tf.space_to_depth(x, block_size=2)
# Layer 1
x = Conv2D(32, (3,3), strides=(1,1), padding='same', name='conv_1', use_bias=False)(input_image)
x = BatchNormalization(name='norm_1')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
# Layer 2
x = Conv2D(64, (3,3), strides=(1,1), padding='same', name='conv_2', use_bias=False)(x)
x = BatchNormalization(name='norm_2')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
# Layer 3
x = Conv2D(128, (3,3), strides=(1,1), padding='same', name='conv_3', use_bias=False)(x)
x = BatchNormalization(name='norm_3')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 4
x = Conv2D(64, (1,1), strides=(1,1), padding='same', name='conv_4', use_bias=False)(x)
x = BatchNormalization(name='norm_4')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 5
x = Conv2D(128, (3,3), strides=(1,1), padding='same', name='conv_5', use_bias=False)(x)
x = BatchNormalization(name='norm_5')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
# Layer 6
x = Conv2D(256, (3,3), strides=(1,1), padding='same', name='conv_6', use_bias=False)(x)
x = BatchNormalization(name='norm_6')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 7
x = Conv2D(128, (1,1), strides=(1,1), padding='same', name='conv_7', use_bias=False)(x)
x = BatchNormalization(name='norm_7')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 8
x = Conv2D(256, (3,3), strides=(1,1), padding='same', name='conv_8', use_bias=False)(x)
x = BatchNormalization(name='norm_8')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
# Layer 9
x = Conv2D(512, (3,3), strides=(1,1), padding='same', name='conv_9', use_bias=False)(x)
x = BatchNormalization(name='norm_9')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 10
x = Conv2D(256, (1,1), strides=(1,1), padding='same', name='conv_10', use_bias=False)(x)
x = BatchNormalization(name='norm_10')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 11
x = Conv2D(512, (3,3), strides=(1,1), padding='same', name='conv_11', use_bias=False)(x)
x = BatchNormalization(name='norm_11')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 12
x = Conv2D(256, (1,1), strides=(1,1), padding='same', name='conv_12', use_bias=False)(x)
x = BatchNormalization(name='norm_12')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 13
x = Conv2D(512, (3,3), strides=(1,1), padding='same', name='conv_13', use_bias=False)(x)
x = BatchNormalization(name='norm_13')(x)
x = LeakyReLU(alpha=0.1)(x)
skip_connection = x
x = MaxPooling2D(pool_size=(2, 2))(x)
# Layer 14
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_14', use_bias=False)(x)
x = BatchNormalization(name='norm_14')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 15
x = Conv2D(512, (1,1), strides=(1,1), padding='same', name='conv_15', use_bias=False)(x)
x = BatchNormalization(name='norm_15')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 16
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_16', use_bias=False)(x)
x = BatchNormalization(name='norm_16')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 17
x = Conv2D(512, (1,1), strides=(1,1), padding='same', name='conv_17', use_bias=False)(x)
x = BatchNormalization(name='norm_17')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 18
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_18', use_bias=False)(x)
x = BatchNormalization(name='norm_18')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 19
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_19', use_bias=False)(x)
x = BatchNormalization(name='norm_19')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 20
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_20', use_bias=False)(x)
x = BatchNormalization(name='norm_20')(x)
x = LeakyReLU(alpha=0.1)(x)
# Layer 21
skip_connection = Conv2D(64, (1,1), strides=(1,1), padding='same', name='conv_21', use_bias=False)(skip_connection)
skip_connection = BatchNormalization(name='norm_21')(skip_connection)
skip_connection = LeakyReLU(alpha=0.1)(skip_connection)
skip_connection = Lambda(space_to_depth_x2)(skip_connection)
x = concatenate([skip_connection, x])
# Layer 22
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_22', use_bias=False)(x)
x = BatchNormalization(name='norm_22')(x)
x = LeakyReLU(alpha=0.1)(x)
self.feature_extractor = Model(input_image, x)
self.feature_extractor.load_weights(FULL_YOLO_BACKEND_PATH)
def normalize(self, image):
return image / 255.
class TinyYoloFeature(BaseFeatureExtractor):
"""docstring for ClassName"""
def __init__(self, input_size):
input_image = Input(shape=(input_size, input_size, 3))
# Layer 1
x = Conv2D(16, (3,3), strides=(1,1), padding='same', name='conv_1', use_bias=False)(input_image)
x = BatchNormalization(name='norm_1')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
# Layer 2 - 5
for i in range(0,4):
x = Conv2D(32*(2**i), (3,3), strides=(1,1), padding='same', name='conv_' + str(i+2), use_bias=False)(x)
x = BatchNormalization(name='norm_' + str(i+2))(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
# Layer 6
x = Conv2D(512, (3,3), strides=(1,1), padding='same', name='conv_6', use_bias=False)(x)
x = BatchNormalization(name='norm_6')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(1,1), padding='same')(x)
# Layer 7 - 8
for i in range(0,2):
x = Conv2D(1024, (3,3), strides=(1,1), padding='same', name='conv_' + str(i+7), use_bias=False)(x)
x = BatchNormalization(name='norm_' + str(i+7))(x)
x = LeakyReLU(alpha=0.1)(x)
self.feature_extractor = Model(input_image, x)
self.feature_extractor.load_weights(TINY_YOLO_BACKEND_PATH)
def normalize(self, image):
return image / 255.
class MobileNetFeature(BaseFeatureExtractor):
"""docstring for ClassName"""
def __init__(self, input_size):
input_image = Input(shape=(input_size, input_size, 3))
mobilenet = MobileNet(input_shape=(224,224,3), include_top=False)
mobilenet.load_weights(MOBILENET_BACKEND_PATH)
x = mobilenet(input_image)
self.feature_extractor = Model(input_image, x)
def normalize(self, image):
image = image / 255.
image = image - 0.5
image = image * 2.
return image
class SqueezeNetFeature(BaseFeatureExtractor):
"""docstring for ClassName"""
def __init__(self, input_size):
# define some auxiliary variables and the fire module
sq1x1 = "squeeze1x1"
exp1x1 = "expand1x1"
exp3x3 = "expand3x3"
relu = "relu_"
def fire_module(x, fire_id, squeeze=16, expand=64):
s_id = 'fire' + str(fire_id) + '/'
x = Conv2D(squeeze, (1, 1), padding='valid', name=s_id + sq1x1)(x)
x = Activation('relu', name=s_id + relu + sq1x1)(x)
left = Conv2D(expand, (1, 1), padding='valid', name=s_id + exp1x1)(x)
left = Activation('relu', name=s_id + relu + exp1x1)(left)
right = Conv2D(expand, (3, 3), padding='same', name=s_id + exp3x3)(x)
right = Activation('relu', name=s_id + relu + exp3x3)(right)
x = concatenate([left, right], axis=3, name=s_id + 'concat')
return x
# define the model of SqueezeNet
input_image = Input(shape=(input_size, input_size, 3))
x = Conv2D(64, (3, 3), strides=(2, 2), padding='valid', name='conv1')(input_image)
x = Activation('relu', name='relu_conv1')(x)
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool1')(x)
x = fire_module(x, fire_id=2, squeeze=16, expand=64)
x = fire_module(x, fire_id=3, squeeze=16, expand=64)
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool3')(x)
x = fire_module(x, fire_id=4, squeeze=32, expand=128)
x = fire_module(x, fire_id=5, squeeze=32, expand=128)
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool5')(x)
x = fire_module(x, fire_id=6, squeeze=48, expand=192)
x = fire_module(x, fire_id=7, squeeze=48, expand=192)
x = fire_module(x, fire_id=8, squeeze=64, expand=256)
x = fire_module(x, fire_id=9, squeeze=64, expand=256)
self.feature_extractor = Model(input_image, x)
self.feature_extractor.load_weights(SQUEEZENET_BACKEND_PATH)
def normalize(self, image):
image = image[..., ::-1]
image = image.astype('float')
image[..., 0] -= 103.939
image[..., 1] -= 116.779
image[..., 2] -= 123.68
return image
class Inception3Feature(BaseFeatureExtractor):
"""docstring for ClassName"""
def __init__(self, input_size):
input_image = Input(shape=(input_size, input_size, 3))
inception = InceptionV3(input_shape=(input_size,input_size,3), include_top=False)
inception.load_weights(INCEPTION3_BACKEND_PATH)
x = inception(input_image)
self.feature_extractor = Model(input_image, x)
def normalize(self, image):
image = image / 255.
image = image - 0.5
image = image * 2.
return image
class VGG16Feature(BaseFeatureExtractor):
"""docstring for ClassName"""
def __init__(self, input_size):
vgg16 = VGG16(input_shape=(input_size, input_size, 3), include_top=False)
#vgg16.load_weights(VGG16_BACKEND_PATH)
self.feature_extractor = vgg16
def normalize(self, image):
image = image[..., ::-1]
image = image.astype('float')
image[..., 0] -= 103.939
image[..., 1] -= 116.779
image[..., 2] -= 123.68
return image
class ResNet50Feature(BaseFeatureExtractor):
"""docstring for ClassName"""
def __init__(self, input_size):
resnet50 = ResNet50(input_shape=(input_size, input_size, 3), include_top=False)
resnet50.layers.pop() # remove the average pooling layer
#resnet50.load_weights(RESNET50_BACKEND_PATH)
self.feature_extractor = Model(resnet50.layers[0].input, resnet50.layers[-1].output)
def normalize(self, image):
image = image[..., ::-1]
image = image.astype('float')
image[..., 0] -= 103.939
image[..., 1] -= 116.779
image[..., 2] -= 123.68
return image