-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtypecheck.ml
233 lines (223 loc) · 14.3 KB
/
typecheck.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
open Dtlclib
exception TypeError of string
exception TypeCheckError of string
exception NormalizationError of string
exception UnificaitionError of string
let meta_variable_count = ref 0
let compute e =
match e with
| Syntax.App (Lambda (x, _, e1), e2) -> Syntax.subst x e2 e1
| Fst (Pair (e1, _)) -> e1
| Snd (Pair (_, e2)) -> e2
| NatElim (_, e2, _, Zero) -> e2
| NatElim (e1, e2, (Lambda (x, tx, Lambda (y, ty, e3))), (Succ e4)) -> Syntax.subst x e4 (Syntax.subst y (Syntax.NatElim (e1, e2, (Lambda (x, tx, Lambda (y, ty, e3))), e4)) e3)
| SumElim(_, (Lambda (x, _, e3)), _, (Inl e)) -> Syntax.subst x e e3
| SumElim(_, _, (Lambda (x, _, e3)), (Inr e)) -> Syntax.subst x e e3
| _ -> e
let definitional_eq (e1 : Syntax.raw_expr) (e2 : Syntax.raw_expr) = e1 = compute e2 || e2 = compute e1
let rec normalize sigma (e : Syntax.raw_expr) =
(* let _ = Printf.printf "normalizing : %s\n" (Syntax.show_raw_expr e) in *)
match e with
| Var x -> begin match Syntax.Gamma.find_opt x sigma with
| None -> e
| Some e -> normalize sigma e
end
| App (e1, e2) -> begin let e1' = normalize sigma e1 in
let e2' = normalize sigma e2 in
match e1' with
| Lambda (x, _, e) -> normalize sigma (Syntax.subst x e2' e)
| _ -> App (e1', e2')
end
| Lambda (x, t, e) -> Lambda (x, t, normalize sigma e)
| Pi ((x, e1, at), e2) -> Pi ((x, normalize sigma e1, at), normalize sigma e2)
| Sigma ((x, e1), e2) -> Sigma ((x, normalize sigma e1), normalize sigma e2)
| Pair (e1, e2) -> Pair (normalize sigma e1, normalize sigma e2)
| Sum (e1, e2) -> Sum (normalize sigma e1, normalize sigma e2)
| Fst e -> let e' = normalize sigma e in
compute (Fst e')
| Snd e -> let e' = normalize sigma e in
compute (Snd e')
| Inl e -> Inl (normalize sigma e)
| Inr e -> Inr (normalize sigma e)
| Succ e -> Succ (normalize sigma e)
| PropEq (e1, e2) -> PropEq (normalize sigma e1, normalize sigma e2)
| Refl (e1, e2) -> Refl (normalize sigma e1, normalize sigma e2)
| NatElim (e1, e2, e3, e4) ->
let next = compute (NatElim (normalize sigma e1, normalize sigma e2, normalize sigma e3, normalize sigma e4)) in
if next = e then e else normalize sigma next
| SumElim (e1, e2, e3, e4) -> normalize sigma (compute (SumElim (normalize sigma e1, normalize sigma e2, normalize sigma e3, normalize sigma e4)))
| EqElim (e1, e2, e3, e4) -> EqElim (normalize sigma e1, normalize sigma e2, normalize sigma e3, normalize sigma e4)
| Type _ | Nat | Zero | Meta _ -> e
let rec alpha_equiv sigma solutions (e1 : Syntax.raw_expr) (e2 : Syntax.raw_expr) =
(* let e1' = normalize sigma e2 in *)
(* let e2' = normalize sigma e2 in *)
(* let () = Printf.printf "%s --> %s\n" (Syntax.show_raw_expr e2) (Syntax.show_raw_expr e1') in *)
let alpha_equiv_helper sol e1 e2 = alpha_equiv sigma sol e1 e2 in
let err e1 e2 = raise (TypeError (Printf.sprintf "Cannot unify %s and %s" (Syntax.show_raw_expr e1) (Syntax.show_raw_expr e2))) in
let e1, e2 = normalize sigma e1, normalize sigma e2 in
match e1, e2 with
| Var x1, Var x2 -> if x1 = x2 then solutions else err e1 e2
| e2, Meta m1
| Meta m1, e2 ->
begin match Syntax.Gamma.find_opt m1 solutions with
| None -> Syntax.Gamma.add m1 e2 solutions
| Some e -> alpha_equiv_helper solutions e e2
end
| Sum (e11, e12), Sum (e21, e22)
| Pair (e11, e12), Pair (e21, e22)
| App (e11, e12), App (e21, e22) -> let sol = (alpha_equiv_helper solutions e11 e21) in
alpha_equiv_helper sol e12 e22
| Lambda (x1, t1, e11), Lambda (x2, t2, e21) -> if t1 = t2 then
alpha_equiv_helper solutions e11 (Syntax.subst x2 (Var x1) e21)
else err e1 e2
| Pi ((x1, e11, _), e12), Pi ((x2, e21, _), e22)
| Sigma ((x1, e11), e12), Sigma ((x2, e21), e22) -> let sol = alpha_equiv_helper solutions e11 e21 in
alpha_equiv_helper sol e12 (Syntax.subst x2 (Var x1) e22)
| Fst e1, Fst e2 | Snd e1, Snd e2
| Succ e1, Succ e2 | Inl e1, Inl e2 | Inr e1, Inr e2 -> alpha_equiv_helper solutions e1 e2
| PropEq (e11, e12), PropEq (e21, e22) -> let sol = alpha_equiv_helper solutions e11 e21 in
alpha_equiv_helper sol e12 e22
| NatElim (e11, e12, e13, e14), NatElim (e21, e22, e23, e24)
| EqElim (e11, e12, e13, e14), EqElim (e21, e22, e23, e24) ->
let sol = alpha_equiv_helper solutions e11 e21 in
let sol = alpha_equiv_helper sol e12 e22 in
let sol = alpha_equiv_helper sol e13 e23 in
alpha_equiv_helper sol e14 e24
| Refl (e11, e12), Refl (e21, e22) ->
let sol = (alpha_equiv_helper solutions e11 e21) in
alpha_equiv_helper sol e12 e22
| Type i1, Type i2 ->
begin match i1, i2 with
| None, _
| _, None -> solutions
| Some i1, Some i2 -> if i1 = i2 then solutions else err e1 e2
end
| Zero, Zero
| Nat, Nat -> solutions
| _, _ -> err e1 e2
let update_gamma sigma gamma x tau = Syntax.Gamma.add x (normalize sigma tau) gamma
let update_sigma sigma x e = Syntax.Gamma.add x (normalize sigma e) sigma
let meta_variable_names s =
List.fold_left (fun res ->
fun (x, _) -> Syntax.StringSet.add x res)
Syntax.StringSet.empty (Syntax.Gamma.bindings s)
let rec fold_meta (ty : Syntax.raw_expr) =
let _ = meta_variable_count := !meta_variable_count + 1 in
match ty with
| Pi ((x, _, Syntax.Implicit), e2) -> Syntax.subst x (Meta (x ^ (string_of_int !meta_variable_count))) (fold_meta e2)
| _ -> ty
let rec type_infer (sigma : Syntax.raw_expr Syntax.Gamma.t) (gamma : Syntax.raw_expr Syntax.Gamma.t) (meta_solutions : Syntax.raw_expr Syntax.Gamma.t) (e : Syntax.raw_expr) =
(* let _ = Printf.printf "Inferring %s\n" (Syntax.show_raw_expr e) in *)
match e with
| Var x ->
begin
match Syntax.Gamma.find_opt x gamma with
| None -> raise (TypeError (Printf.sprintf "%s not found in gamma" x))
| Some e -> fold_meta e
end
| Lambda _ -> raise (TypeCheckError (Printf.sprintf "%s is a Lambda, which should be checkable" (Syntax.show_raw_expr e)))
| App (e1, e2) -> let ty_e1 = type_infer sigma gamma meta_solutions e1 in
begin match ty_e1 with
| Pi ((x, e3, Syntax.Explicit), e4) ->
let _ = type_check sigma gamma meta_solutions e2 e3 in
Syntax.subst x e2 e4
| _ -> raise (TypeError (Printf.sprintf "Cannot apply %s to [%s : %s]" (Syntax.show_raw_expr e2) (Syntax.show_raw_expr e1) (Syntax.show_raw_expr ty_e1)))
end
| Pi ((x, e1, _), e2) | Sigma ((x, e1), e2) ->
let sol = type_check sigma gamma meta_solutions e1 (Syntax.Type None) in
let _ = type_check sigma (Syntax.Gamma.add x e1 gamma) sol e2 (Syntax.Type None) in
Syntax.Type None
| Sum (e1, e2) -> let _ = type_check sigma gamma (type_check sigma gamma meta_solutions e1 (Syntax.Type None)) e2 (Syntax.Type None) in
Syntax.Type None
| Inl _ -> raise (TypeCheckError "Cannot infer type of Inl")
| Inr _ -> raise (TypeCheckError "Cannot infer type of Inr")
| Pair (_, _) -> raise (TypeCheckError "Cannot infer type of Product")
| Fst e -> let ty_e = type_infer sigma gamma meta_solutions e in
begin match ty_e with
| Sigma ((_, e1), _) -> e1
| _ -> raise (TypeError (Printf.sprintf "Cannot apply %s with Fst" (Syntax.show_raw_expr e)))
end
| Snd e -> let ty_e = type_infer sigma gamma meta_solutions e in
begin match ty_e with
| Sigma ((x, _), e2) -> Syntax.subst x (Syntax.Fst e) e2
| _ -> raise (TypeError (Printf.sprintf "Cannot apply %s with Snd" (Syntax.show_raw_expr e)))
end
| Zero | Succ _ -> Nat
| Refl (e1, e2) -> let sol = type_check sigma gamma meta_solutions e1 (Type None) in
let _ = type_check sigma gamma sol e2 e1 in
Syntax.PropEq (e2, e2)
| PropEq (e1, e2) -> let ty_e1 = type_infer sigma gamma meta_solutions e1 in
let _ = type_check sigma gamma meta_solutions e2 ty_e1 in
Syntax.Type None
| NatElim (e1, e2, e3, e4) ->
let sol = type_check sigma gamma meta_solutions e4 Syntax.Nat in
begin match e1 with
| Lambda (z, _, goal) ->
let sol = type_check sigma (update_gamma sigma gamma z Syntax.Nat) sol goal (Syntax.Type None) in
let sol = type_check sigma gamma sol e2 (Syntax.subst z Zero goal) in
begin match e3 with
| Lambda (x, _, Lambda (y, _, e3)) ->
let _ = type_check sigma (Syntax.Gamma.add y (Syntax.subst z (Syntax.Var x) goal) (Syntax.Gamma.add x Syntax.Nat gamma)) sol e3 (Syntax.subst z (Syntax.Succ (Syntax.Var x)) goal) in
Syntax.subst z e4 goal
| _ -> raise (TypeError (Printf.sprintf "Inductive Step %s is not valid" (Syntax.show_raw_expr e3)))
end
| _ -> raise (TypeError (Printf.sprintf "Motive of NatElim should be a Lambda, but not %s" (Syntax.show_raw_expr e1)))
end
| EqElim (e1, e2, e3, e4) ->
let sol = type_check sigma gamma meta_solutions e1 (Syntax.Type None) in
let ty_e4 = type_infer sigma gamma sol e4 in
begin match ty_e4 with
| PropEq (lhs, rhs) ->
let ty_lhs = type_infer sigma gamma sol lhs in
let sol = type_check sigma gamma sol rhs ty_lhs in
begin match e2 with
| Lambda (x, _, Lambda (y, _, goal)) ->
let sol = type_check sigma (Syntax.Gamma.add y e1 (Syntax.Gamma.add x e1 gamma)) sol goal (Syntax.Type None) in
begin match e3 with
| Lambda (w, _, e3) ->
let _ = type_check sigma (Syntax.Gamma.add w e1 gamma) sol e3 (Syntax.subst x (Syntax.Var w) (Syntax.subst y (Syntax.Var w) goal)) in
Syntax.subst x lhs (Syntax.subst y rhs goal)
| _ -> raise (TypeError (Printf.sprintf "Inductive Step %s is not valid" (Syntax.show_raw_expr e3)))
end
| _ -> raise (TypeError (Printf.sprintf "Motive of EqElim should be a Lambda, but got %s" (Syntax.show_raw_expr e2)))
end
| _ -> raise (TypeError (Printf.sprintf "EqElim cannot eliminate %s" (Syntax.show_raw_expr ty_e4)))
end
| SumElim (e1, e2, e3, e4) ->
let ty = type_infer sigma gamma meta_solutions e4 in
begin match ty with
| Sum (t1, t2) ->
begin match e1, e2, e3 with
| Lambda (z, _, goal), Lambda (x1, _, inl_goal), Lambda (x2, _, inr_goal) ->
let sol = type_check sigma (update_gamma sigma gamma x1 t1) meta_solutions inl_goal (Syntax.subst z (Var x1) goal) in
let _ = type_check sigma (update_gamma sigma gamma x2 t2) sol inr_goal (Syntax.subst z (Var x2) goal) in
Syntax.subst z e4 goal
| _ -> raise (TypeError (Printf.sprintf "Motive of SumElim should be a Lambda, but got %s" (Syntax.show_raw_expr e2)))
end
| _ -> raise (TypeError (Printf.sprintf "SumElim cannot eliminate %s" (Syntax.show_raw_expr ty)))
end
| Meta _ -> Type None
| Type None -> Type (Some 0)
| Nat -> Type None
| Type (Some i) -> Type (Some (succ i))
and type_check (sigma : Syntax.raw_expr Syntax.Gamma.t) (gamma : Syntax.raw_expr Syntax.Gamma.t) (meta_solutions : Syntax.raw_expr Syntax.Gamma.t) (expr : Syntax.raw_expr) (tau : Syntax.raw_expr) =
(* let _ = Printf.printf "Checking %s : %s\n" (Syntax.show_raw_expr expr) (Syntax.show_raw_expr tau) in *)
let add_to_gamma x tau = update_gamma sigma gamma x tau in
(* let add_to_sigma x e = update_sigma sigma x e in *)
let normalize_expr e = normalize sigma e in
let check tau infer_ty =
(* let _ = Printf.printf "Unifying %s : %s\n" (Syntax.show_raw_expr expr) (Syntax.show_raw_expr tau) in *)
alpha_equiv sigma meta_solutions tau infer_ty in
match tau, expr with
| Pi ((x1, e11, Syntax.Implicit), e21), Lambda (x2, Syntax.Implicit, e22)
| Pi ((x1, e11, Syntax.Explicit), e21), Lambda (x2, Syntax.Explicit, e22) ->
type_check sigma (add_to_gamma x2 e11) meta_solutions e22 (normalize_expr (Syntax.subst x1 (Syntax.Var x2) e21))
| Pi ((x1, _, Syntax.Implicit), e21), _ ->
let _ = (meta_variable_count := !meta_variable_count + 1) in
type_check sigma gamma meta_solutions expr (Syntax.subst x1 (Meta (x1 ^ (string_of_int !meta_variable_count))) e21)
| Sum (e1, _), Inl e -> type_check sigma gamma meta_solutions e e1
| Sum (_, e2), Inr e -> type_check sigma gamma meta_solutions e e2
| Sigma ((x, t1), t2), Pair(e1, e2) -> let sol = type_check sigma gamma meta_solutions e1 t1 in
type_check sigma gamma sol e2 (Syntax.subst x t1 t2)
| _, _ -> let infer_ty = type_infer sigma gamma meta_solutions expr in
check tau infer_ty