This repository has been archived by the owner on Jul 17, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathutils.py
44 lines (36 loc) · 1.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import tensorflow as tf
from tensorflow.contrib import slim
import numpy as np
import sys
from tensorflow.contrib.layers.python.layers import initializers
def fc_net(inp, layers, out_layers, scope, lamba=1e-3, activation=tf.nn.relu, reuse=None,
weights_initializer=initializers.xavier_initializer(uniform=False)):
with slim.arg_scope([slim.fully_connected],
activation_fn=activation,
normalizer_fn=None,
weights_initializer=weights_initializer,
reuse=reuse,
weights_regularizer=slim.l2_regularizer(lamba)):
if layers:
h = slim.stack(inp, slim.fully_connected, layers, scope=scope)
if not out_layers:
return h
else:
h = inp
outputs = []
for i, (outdim, activation) in enumerate(out_layers):
o1 = slim.fully_connected(h, outdim, activation_fn=activation, scope=scope + '_{}'.format(i + 1))
outputs.append(o1)
return outputs if len(outputs) > 1 else outputs[0]
def get_y0_y1(sess, y, f0, f1, shape=(), L=1, verbose=True):
y0, y1 = np.zeros(shape, dtype=np.float32), np.zeros(shape, dtype=np.float32)
ymean = y.mean()
for l in range(L):
if L > 1 and verbose:
sys.stdout.write('\r Sample {}/{}'.format(l + 1, L))
sys.stdout.flush()
y0 += sess.run(ymean, feed_dict=f0) / L
y1 += sess.run(ymean, feed_dict=f1) / L
if L > 1 and verbose:
print()
return y0, y1