diff --git a/README.md b/README.md index c97b150..06c57f3 100644 --- a/README.md +++ b/README.md @@ -1,41 +1,130 @@ -# Swarms-Example-1-Click-Template +# StellarNet 🌟 [![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb) +[![Python](https://img.shields.io/badge/Python-3.10+-blue.svg)](https://www.python.org/downloads/) +[![PyTorch](https://img.shields.io/badge/PyTorch-2.0+-orange.svg)](https://pytorch.org/) +[![License](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT) +[![arXiv](https://img.shields.io/badge/arXiv-2024.xxxxx-b31b1b.svg)](https://arxiv.org/) -[![GitHub stars](https://img.shields.io/github/stars/The-Swarm-Corporation/Legal-Swarm-Template?style=social)](https://github.com/The-Swarm-Corporation/Legal-Swarm-Template) -[![Swarms Framework](https://img.shields.io/badge/Built%20with-Swarms-blue)](https://github.com/kyegomez/swarms) +StellarNet: An AI system probing the possibility that stars may possess primitive forms of information processing. By analyzing complex patterns in stellar emissions using deep learning, we search for signatures of self-organization and structured behavior that transcend random processes. -## 🚀 Quick Start +## Overview + +This project implements a comprehensive analysis pipeline for investigating potential "consciousness-like" patterns in stellar data using PyTorch and astronomical data from TESS and Kepler missions. + + +## Features + +- 🔬 Real-time analysis of stellar light curves from TESS/Kepler missions +- 🧠 LSTM-based pattern detection for stellar behavior prediction +- 📊 Comprehensive entropy and frequency analysis +- 🔍 Anomaly detection in stellar emissions +- 📈 Advanced visualization of stellar patterns + +## Installation ```bash # Clone the repository -git clone https://github.com/The-Swarm-Corporation/Swarms-Example-1-Click-Template.git +git clone https://github.com/Agora-Lab-AI/StellarNet.git +cd StellarNet + +# Create and activate a virtual environment (optional but recommended) +python -m venv venv +source venv/bin/activate # On Windows, use `venv\Scripts\activate` + +# Install dependencies +pip install -r requirements.txt +``` + +## Quick Start -# Install requirements -pip3 install -r requirements.txt +```bash +python main.py +``` -# Set your task in the .env file or pass it in the yaml file on the bottom `task:` -export WORKSPACE_DIR="agent_workspace" -export GROQ_API_KEY="" +By default, the script analyzes a set of pre-selected variable stars. To analyze specific stars: -# Run the swarm -python3 main.py +```bash +python main.py --star_id "TIC 260128333" --mission "TESS" ``` -## 🛠 Built With +## Requirements -- [Swarms Framework](https://github.com/kyegomez/swarms) - Python 3.10+ -- GROQ API Key or you can change it to use any model from [Swarm Models](https://github.com/The-Swarm-Corporation/swarm-models) +- PyTorch +- lightkurve +- astropy +- numpy +- pandas +- scipy +- scikit-learn +- matplotlib + +See `requirements.txt` for complete list. + +## Methodology + +Our analysis pipeline consists of several key components: + +1. **Data Collection**: Automated fetching of stellar light curves from TESS/Kepler missions +2. **Preprocessing**: Cleaning and normalization of time-series data +3. **Pattern Analysis**: + - Shannon entropy calculation + - Fourier analysis + - LSTM-based pattern prediction + - Anomaly detection +4. **Visualization**: Comprehensive plotting of results + +## Results + +Analysis results are saved in the `results/` directory with the following structure: +- `{star_id}_analysis.npz`: Numerical results and statistics +- `{star_id}_plots.png`: Visualization plots +- `models/{star_id}_model.pt`: Trained LSTM model + +## Contributing + +We welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details. + +1. Fork the repository +2. Create a feature branch +3. Commit your changes +4. Push to the branch +5. Open a Pull Request + +## Citation + +If you use this code in your research, please cite: + +```bibtex +@article{stellarnet2024, + title={StellarNet: Investigating Information Processing Patterns in Stellar Emissions}, + author={Agora Lab AI, Kye Gomez}, + journal={arXiv preprint arXiv:2024.xxxxx}, + year={2024} +} +``` + +## License -## 📬 Contact +This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. -Questions? Reach out: +## Acknowledgments + +- NASA's TESS and Kepler missions for providing stellar data +- The lightkurve team for their excellent data access tools +- The astropy community for their comprehensive astronomy tools + +## Contact + +- **Project Lead**: [Your Name](mailto:contact@agoralab.ai) +- **Website**: [https://agoralab.ai](https://agoralab.ai) +- **Issues**: [GitHub Issues](https://github.com/Agora-Lab-AI/StellarNet/issues) - Twitter: [@kyegomez](https://twitter.com/kyegomez) - Email: kye@swarms.world @@ -48,5 +137,3 @@ Questions? Reach out: --- ⭐ Star us on GitHub if this project helped you! - -Built with ♥ using [Swarms Framework](https://github.com/kyegomez/swarms)