-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathgenerate.py
executable file
·332 lines (297 loc) · 17.6 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import argparse
from datetime import datetime
from io import BytesIO
import json
import os
import shutil
import sys
from shapeworld import Dataset, util
if __name__ == '__main__':
if os.uname()[0] == 'Darwin':
raise Exception('Mac not currently supported. See https://github.com/AlexKuhnle/ShapeWorld/issues/27 for more information.')
parser = argparse.ArgumentParser(description='Generate example data')
parser.add_argument('-d', '--directory', help='Directory for generated data (with automatically created sub-directories, unless --unmanaged)')
parser.add_argument('-a', '--archive', default=None, choices=('zip', 'zip:none', 'zip:deflate', 'zip:bzip2', 'zip:lzma', 'tar', 'tar:none', 'tar:gzip', 'tar:bzip2', 'tar:lzma'), help='Store generated data in (compressed) archives')
parser.add_argument('-U', '--unmanaged', action='store_true', help='Do not automatically create sub-directories (implied if --shards not specified)')
parser.add_argument('-t', '--type', default=None, help='Dataset type')
parser.add_argument('-n', '--name', type=util.parse_tuple(parse_item=str, unary_tuple=False), default=None, help='Dataset name')
parser.add_argument('-v', '--variant', type=util.parse_tuple(parse_item=str, unary_tuple=False), default=None, help='Label for configuration variant')
parser.add_argument('-l', '--language', default=None, help='Language')
parser.add_argument('-c', '--config', type=util.parse_tuple(parse_item=str, unary_tuple=False), default=None, help='Configuration file/directory')
parser.add_argument('-s', '--shards', type=util.parse_tuple(parse_item=util.parse_int_with_factor, unary_tuple=True, valid_sizes=(1, 3)), default=None, help='Number of shards to split data into (not specified implies --unmanaged)')
parser.add_argument('-i', '--instances', type=util.parse_int_with_factor, default=128, help='Number of instances per shard')
parser.add_argument('-m', '--mode', default=None, choices=('train', 'validation', 'test'), help='Mode')
parser.add_argument('-b', '--begin', type=util.parse_tuple(parse_item=util.parse_int_with_factor, unary_tuple=True, valid_sizes=(1, 3)), default=None, help='Begin from shard number (requires --append)')
parser.add_argument('-A', '--append', action='store_true', help='Append to existing data (when used without --unmanaged)')
parser.add_argument('-P', '--delay-pixel-noise', action='store_true', help='Do not infuse pixel noise now, but when dataset is loaded')
parser.add_argument('-M', '--include-model', action='store_true', help='Include world/caption model (as json file)')
parser.add_argument('-H', '--html', action='store_true', help='Create HTML file visualizing the generated data')
parser.add_argument('-T', '--tf-records', action='store_true', help='Additionally store data as TensorFlow records')
parser.add_argument('-F', '--features', action='store_true', help='Additionally extract image features (conv4 of resnet_v2_101)')
parser.add_argument('-C', '--clevr-format', action='store_true', help='Output in CLEVR format')
parser.add_argument('-N', '--numpy-format', action='store_true', help='Store images in NumPy as opposed to image format')
parser.add_argument('-G', '--png-format', action='store_true', help='Store images in PNG as opposed to bitmap format')
parser.add_argument('-O', '--concatenate-images', action='store_true', help='Concatenate images per part into one image file')
parser.add_argument('-Y', '--yes', action='store_true', help='Confirm all questions with yes')
# parser.add_argument('-v', '--values', default=None, help='Comma-separated list of values to include')
parser.add_argument('--config-values', nargs=argparse.REMAINDER, default=(), help='Additional dataset configuration values passed as command line arguments')
args = parser.parse_args()
args.config_values = util.parse_config(values=args.config_values)
# TFRecords utility
if args.tf_records:
from shapeworld import tf_util
# does not include variant, as loading data for generation is not expected
dataset = Dataset.create(dtype=args.type, name=args.name, language=args.language, config=args.config, **args.config_values)
sys.stdout.write('{time} {dataset}\n'.format(time=datetime.now().strftime('%H:%M:%S'), dataset=dataset))
if args.config is None:
if args.config_values:
sys.stdout.write(' config: {config}\n'.format(config=args.config_values))
else:
sys.stdout.write(' config: {config}\n'.format(config=args.config))
if args.config_values:
sys.stdout.write(' {config}\n'.format(config=args.config_values))
sys.stdout.flush()
if args.archive is not None and not args.delay_pixel_noise and dataset.pixel_noise_stddev is not None:
sys.stdout.write('Warning: best compression results without pixel noise, continue? ')
sys.stdout.flush()
if args.yes:
sys.stdout.write('y\n')
elif util.negative_response(sys.stdin.readline()[:-1]):
exit(0)
if args.instances * util.product(dataset.world_shape()) > 5e8: # > 500MB
sys.stdout.write('{time} warning: shard size is {size}MB '.format(time=datetime.now().strftime('%H:%M:%S'), size=int(args.instances * util.product(dataset.world_shape()) / 1e6)))
sys.stdout.flush()
if args.yes:
sys.stdout.write('y\n')
elif util.negative_response(sys.stdin.readline()[:-1]):
exit(0)
numpy_formats = list()
if args.numpy_format:
for value_name, value_type in list(dataset.values.items()):
if value_type == 'world':
numpy_formats.append(value_name)
if args.features:
from pretrained import PretrainedModel
pretrained_model = PretrainedModel(image_shape=dataset.world_shape())
for value_name, value_type in list(dataset.values.items()):
value_type, alts = util.alternatives_type(value_type=value_type)
if value_type == 'world':
if alts:
dataset.values[value_name + '_features'] = 'alternatives(vector(float))'
else:
dataset.values[value_name + '_features'] = 'vector(float)'
dataset.vectors[value_name + '_features'] = pretrained_model.features_shape
numpy_formats.append(value_name + '_features')
specification = dataset.specification()
specification['generated'] = True
specification['directory'] = args.directory
if args.variant is not None:
specification['variant'] = args.variant
if args.archive:
specification['archive'] = args.archive
if args.delay_pixel_noise and dataset.pixel_noise_stddev is not None:
specification['pixel_noise_stddev'] = dataset.pixel_noise_stddev
dataset.pixel_noise_stddev = None
if args.include_model:
specification['include_model'] = args.include_model
if len(numpy_formats) > 0:
specification['numpy_formats'] = numpy_formats
if args.png_format:
specification['image_format'] = 'png'
if args.concatenate_images:
specification['num_concat_worlds'] = args.instances
if args.unmanaged:
directory = args.directory
if args.shards is None:
shards = (None,)
else:
if all(shard == 0 for shard in args.shards):
shards = tuple(None for _ in args.shards)
else:
shards = args.shards
else:
full_name = dataset.name
if args.variant:
full_name = '{}-{}'.format(full_name, args.variant)
if args.language:
full_name = '{}-{}'.format(full_name, args.language)
specification['relative_directory'] = os.path.join(dataset.type, full_name)
directory = os.path.join(args.directory, dataset.type, full_name)
specification_path = os.path.join(args.directory, '{}-{}.json'.format(dataset.type, full_name))
if args.shards is None:
shards = (None,)
else:
shards = args.shards
assert all(shard is None or shard >= 0 for shard in shards)
if len(shards) == 1:
modes = (args.mode,)
if args.unmanaged or args.mode is None:
directories = (directory,)
else:
directories = (os.path.join(directory, args.mode),)
elif len(shards) == 3:
assert args.mode is None
modes = ('train', 'validation', 'test')
directories = tuple(os.path.join(directory, mode) for mode in modes)
# assert args.begin is None or args.append
assert args.begin is None or len(args.begin) == len(args.shards)
# assert args.begin is None or not args.clevr_format
if args.begin is not None:
shards_begin = args.begin
if not args.unmanaged:
with open(specification_path, 'r') as filehandle:
loaded_specification = json.load(filehandle)
assert loaded_specification == specification, str(loaded_specification) + '\n' + str(specification)
elif args.append:
if args.clevr_format:
shards_begin = ()
for subdir in directories:
for root, dirs, files in os.walk(subdir):
assert root == subdir
assert not dirs
if any(f[:6] == 'world_' for f in files):
shard_begin = max(int(f[6:f.index('.')]) for f in files if f[:6] == 'world_' and not f.endswith('.npy')) + 1
assert shard_begin % args.instances == 0
shards_begin += (shard_begin,)
else:
shards_begin += (0,)
else:
shards_begin = ()
for subdir in directories:
for root, dirs, files in os.walk(subdir):
if root == subdir:
if dirs:
assert all(d[:5] == 'shard' for d in dirs)
shards_begin += (max(int(d[5:]) for d in dirs) + 1,)
elif files:
assert all(f[:5] == 'shard' for f in files)
shards_begin += (max(int(f[5:f.index('.')]) for f in files if not f.endswith('.npy')) + 1,)
else:
shards_begin += (0,)
if not args.unmanaged:
with open(specification_path, 'r') as filehandle:
loaded_specification = json.load(filehandle)
assert loaded_specification == specification, str(loaded_specification) + '\n' + str(specification)
else:
shards_begin = (0,) * len(directories)
if not args.unmanaged and os.path.isdir(directory):
sys.stdout.write('Delete content of directory {directory}? '.format(directory=directory))
sys.stdout.flush()
if args.yes:
sys.stdout.write('y\n')
elif util.negative_response(sys.stdin.readline()[:-1]):
exit(0)
shutil.rmtree(directory)
os.makedirs(directory)
elif not os.path.isdir(directory):
os.makedirs(directory)
if not args.unmanaged:
with open(specification_path, 'w') as filehandle:
json.dump(specification, filehandle)
if len(directories) > 1:
for subdir in directories:
if not os.path.isdir(subdir):
os.makedirs(subdir)
for mode, directory, num_shards, shard_begin in zip(modes, directories, shards, shards_begin):
sys.stdout.write('{time} generate {dtype} {name}{mode} data...\n'.format(time=datetime.now().strftime('%H:%M:%S'), dtype=dataset.type, name=dataset.name, mode=(' ' + mode if mode else '')))
sys.stdout.write(' 0% 0/{shards} (time per shard: n/a)'.format(shards=(1 if num_shards is None else num_shards)))
sys.stdout.flush()
for shard in range(1 if num_shards is None else num_shards):
before = datetime.now()
if num_shards is None:
path = directory
num_shards = 1
else:
path = os.path.join(directory, 'shard{}'.format(shard_begin + shard))
if args.clevr_format:
questions = [list(), list()]
generated = dataset.generate(n=args.instances, mode=mode, include_model=(args.include_model or args.clevr_format), alternatives=True)
if generated is None:
assert False
elif args.clevr_format:
from shapeworld.world import World
from shapeworld.datasets import clevr_util
assert args.type == 'agreement'
worlds = generated['world']
captions = generated['caption']
captions_length = generated['caption_length']
captions_model = generated.get('caption_model')
agreements = generated['agreement']
for n in range(len(worlds)):
index = (shard_begin + shard) * args.instances + n
filename = 'world_{}.png'.format(index)
image_bytes = BytesIO()
World.get_image(world_array=worlds[n]).save(image_bytes, format='png')
with open(os.path.join(directory, filename), 'wb') as filehandle:
filehandle.write(image_bytes.getvalue())
image_bytes.close()
id2word = dataset.vocabulary(value_type='language')
if 'alternatives' in generated:
captions_iter = zip(captions[n], captions_length[n], captions_model[n], agreements[n])
else:
captions_iter = zip((captions[n],), (captions_length[n],), (captions_model[n],), (agreements[n],))
for caption, caption_length, caption_model, agreement in captions_iter:
if agreement == 1.0:
answer = 'true'
elif agreement == 0.0:
answer = 'false'
else:
assert False
answer = 'maybe'
for parse_mode in range(2):
if caption_model is None:
program = None
else:
program = clevr_util.parse_program(mode=parse_mode, model=caption_model)
questions[parse_mode].append(dict(
image_index=index,
program=program,
question_index=0,
image_filename=filename,
question_family_index=0,
split=mode,
answer=answer,
question=' '.join(id2word[caption[i]] for i in range(caption_length))
))
else:
if args.features:
for value_name, value_type in dataset.values.items():
if value_type == 'world':
features = pretrained_model.features(images=generated[value_name])
generated[value_name + '_features'] = features
dataset.serialize(path=path, generated=generated, archive=args.archive, html=args.html, numpy_formats=numpy_formats, image_format=('png' if args.png_format else 'bmp'), concat_worlds=args.concatenate_images)
if args.tf_records:
tf_util.write_records(dataset=dataset, records=generated, path=path)
after = datetime.now()
sys.stdout.write('\r {completed:.0f}% {shard}/{shards} (time per shard: {duration})'.format(completed=((shard + 1) * 100 / num_shards), shard=(shard + 1), shards=num_shards, duration=str(after - before).split('.')[0]))
sys.stdout.flush()
if args.clevr_format:
for parse_mode in range(2):
if not args.append and shard_begin > 0:
filename = 'captions{}-{}.json'.format('' if parse_mode == 0 else parse_mode, shard_begin)
else:
filename = 'captions{}.json'.format('' if parse_mode == 0 else parse_mode)
if shard > 0 or (args.append and shard_begin > 0):
if len(questions[parse_mode]) == 0:
continue
with open(os.path.join(directory, filename), 'r') as filehandle:
json_string = filehandle.read()
assert json_string[-2:] == ']}'
assert json_string[-3] in '[}'
with open(os.path.join(directory, filename), 'w') as filehandle:
filehandle.write(json_string[:-2])
if json_string[-3] == '}':
filehandle.write(', ')
json_string = json.dumps(questions[parse_mode])
assert json_string[:2] == '[{'
filehandle.write(json_string[1:])
filehandle.write('}')
else:
with open(os.path.join(directory, filename), 'w') as filehandle:
json.dump({'questions': questions[parse_mode]}, filehandle)
sys.stdout.write('\n')
sys.stdout.flush()
if args.features:
pretrained_model.close()
sys.stdout.write('{time} data generation completed\n'.format(time=datetime.now().strftime('%H:%M:%S')))
sys.stdout.flush()