-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatic_solver.jl
177 lines (142 loc) · 6.34 KB
/
static_solver.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
using LinearAlgebra
#= Author: Alexander Greer
FUNCTION INPUTS
connecttable describes the ELEMENTS
Column
1: element number
2: node A
3: node B
4: cross-sectional area
5: elastic modulus
6: coefficient of thermal expansion
7: temperature change
nodetable describes the NODES
Column
1: node number
2: x-coordinate
3: y-coordinate
4: z-coodinate
5: x-displacement (if known, NaN if unknown)
6: y-displacement (if known, NaN if unknown)
7: z-displacement (if known, NaN if unknown)
8: external force in x-direction (if known, NaN if unknown)
9: external force in y-direction (if known, NaN if unknown)
10: external force in z-direction (if known, NaN if unknown)
dof is the number of degrees of freedom in the truss
FUNCTION OUTPUTS
u = matrix of displacements for each node (size n x dof, where n is the number of nodes and dof is the number of degress of freedom)
For row n:
Column 1: x-displacement of node n
Column 2: y-displacement of node n
Column 3: z-displacement of node n
F = matrix of external force on each node (size n x dof)
For row n:
Column 1: x-component of external force on node n
Column 2: y-component of external force on node n
Column 3: z-component of external force on node n
sigma = vector of axial stress in each element (size m x 1, where m is the number of elements)
For row m:
Column 1: axial stress in element m
=#
#function [u, F, sigma] = static_solver(nodetable, connecttable, dof)
function static_solver(nodetable, connecttable, dof)
#----------- PREPROCESSING -----------
# coordinate matrix for each node with the specified dof
co = nodetable[:,2:dof+1];
# external force matrix for each node with the specified dof
F = nodetable[:,8:dof+7];
# displacement matrix for each node with the specified dof
u = nodetable[:,5:dof+4];
Nel = size(connecttable,1); # number of elements
Nnodes = size(co,1); # number of nodes
#----------- Initializing Variables -----------
# initialize internal force vector
sigma = fill(NaN,Nel,1); # how to do this in julia
#initialize unitvector array for elements
e = fill(NaN,dof,1,Nel);
#initialize R array for elements
R = fill(NaN,dof,dof,Nel);
#initialize K hat vector for elements
K_hat = fill(NaN,dof,dof,Nel);
#initialize array of augmented K matrices for elements
K_aug = zeros(Nnodes.*dof,Nnodes.*dof,Nel);
#initialize the global K matrix
K = zeros(Nnodes.*dof,Nnodes.*dof);
#initializing the augmented temperature vector
T_aug1 = zeros(Nnodes,dof,Nel);
T_aug2 = zeros(Nnodes,dof,Nel);
#initializing the global temperature effect vector
T = zeros(Nnodes,dof);
#----------- Form Global Stiffness Matrix -----------
for i = 1:Nel
#make the e vector for each element
#subtract the second from the first node
#indexes are the node numbers for the element
index1 = Int64(connecttable[i,2]);
index2 = Int64(connecttable[i,3]);
second_node = co[index2,:];
first_node = co[index1,:];
e[:,:,i] = (second_node - first_node)./(norm(second_node-first_node)); # check if norm is a function
#make the R vector for each element
R[:,:,i] = e[:,:,i]*e[:,:,i]';
#make the K_hat vector for each element
E = connecttable[i,5];
A = connecttable[i,4];
L = norm(second_node-first_node);
K_hat[:,:,i] = (E.*A)./(L).*R[:,:,i];
#----------- make the augmented stiffness matrix for each element-----------
#place the positive and negative K hat vectors for an element in an
#augmented matrix based off of node numbers
K_aug[((index1-1)*dof+1):((index1-1)*dof+dof),((index1-1)*dof+1):((index1-1)*dof+dof),i] = K_hat[:,:,i];
K_aug[((index1-1)*dof+1):((index1-1)*dof+dof),((index2-1)*dof+1):((index2-1)*dof+dof),i] = -1*K_hat[:,:,i];
K_aug[((index2-1)*dof+1):((index2-1)*dof+dof),((index1-1)*dof+1):((index1-1)*dof+dof),i] = -1*K_hat[:,:,i];
K_aug[((index2-1)*dof+1):((index2-1)*dof+dof),((index2-1)*dof+1):((index2-1)*dof+dof),i] = K_hat[:,:,i];
#make the global stiffness matrix, add the augmented stiffness matrix
#for the current element to the global stiffness matrix
K = K + K_aug[:,:,i];
#Calculate the temperature effects for each element
alpha = connecttable[i,6];
deltaT = connecttable[i,7];
#create the augmented temperature matrices
T_aug1[index1,:,i] = alpha*deltaT*E*A*e[:,:,i]';
T_aug2[index2,:,i] = -1*alpha*deltaT*E*A*e[:,:,i]';
#make the global Temmperature matrix, add the augmented temperature
#matrices
T = T + T_aug1[:,:,i] + T_aug2[:,:,i];
end
#----------- Calculate all of the output variables -----------
#manipulate the F and umatrix so that it is a column vector
F_column = reshape(F',:,1); # we need to see what the reshape command is going to look like in Julia
u_column = reshape(u',:,1);
T_column = reshape(T',:,1);
#Create a logical matrix for values that must be taken out
F_logical = map(!isnan,F_column); # this does not work in julia
#creating the reduces values for u, F, A, and K
F_reduced = F_column[F_logical];
u_reduced = u_column[F_logical];
T_reduced = T_column[F_logical];
mask = convert(Matrix{Bool}, F_logical*F_logical')
#println(mask)
K_reduced = K[mask]; # THIS IS INEFFICIENT - LOOK TO DO THIS BETTER
K_reduced = reshape(K_reduced,length(F_reduced),length(F_reduced))
#solve the values for u_reduced
u_reduced = K_reduced\(F_reduced - T_reduced);
#Put u_reduced back into u
u_column[F_logical] = u_reduced;
u = reshape(u_column',dof,Nnodes)';
#solve the values for F
F_vert = K*u_column + T_column;
F = reshape(F_vert',dof,Nnodes)';
#calculate the internal stress from the displacements
for m = 1:Nel
E = connecttable[m,5];
alpha = connecttable[m,6];
deltaT = connecttable[m,7];
second_node = Int64(connecttable[m,3]);
first_node = Int64(connecttable[m,2]);
L = norm(co[second_node,:] - co[first_node,:]);
sigma[m] = (E./L).*(((u[second_node,:]-u[first_node,:])'*e[:,:,m])[1] - alpha.*deltaT.*L); # also BS solutions with the [1]
end
# return the displacements, element forces and stresses
return [u, F, sigma]
end