-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmemory.py
410 lines (333 loc) · 15.3 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
from __future__ import absolute_import
from collections import deque, namedtuple
import warnings
import random
import numpy as np
# This is to be understood as a transition: Given `state0`, performing `action`
# yields `reward` and results in `state1`, which might be `terminal`.
Experience = namedtuple('Experience', 'state0, action, reward, terminal1, error, state1')
def sample_batch_indexes(low, high, size):
"""Return a sample of (size) unique elements between low and high
# Argument
low (int): The minimum value for our samples
high (int): The maximum value for our samples
size (int): The number of samples to pick
# Returns
A list of samples of length size, with values between low and high
"""
if high - low >= size:
# We have enough data. Draw without replacement, that is each index is unique in the
# batch. We cannot use `np.random.choice` here because it is horribly inefficient as
# the memory grows. See https://github.com/numpy/numpy/issues/2764 for a discussion.
# `random.sample` does the same thing (drawing without replacement) and is way faster.
try:
r = xrange(low, high)
except NameError:
r = range(low, high)
batch_idxs = random.sample(r, size)
else:
# Not enough data. Help ourselves with sampling from the range, but the same index
# can occur multiple times. This is not good and should be avoided by picking a
# large enough warm-up phase.
warnings.warn('Not enough entries to sample without replacement. Consider increasing your warm-up phase to avoid oversampling!')
batch_idxs = np.random.random_integers(low, high - 1, size=size)
assert len(batch_idxs) == size
return batch_idxs
class RingBuffer(object):
def __init__(self, maxlen):
self.maxlen = maxlen
self.start = 0
self.length = 0
self.data = [None for _ in range(maxlen)]
def __len__(self):
return self.length
def __getitem__(self, idx):
"""Return element of buffer at specific index
# Argument
idx (int): Index wanted
# Returns
The element of buffer at given index
"""
if idx < 0 or idx >= self.length:
raise KeyError()
return self.data[(self.start + idx) % self.maxlen]
def append(self, v):
"""Append an element to the buffer
# Argument
v (object): Element to append
"""
if self.length < self.maxlen:
# We have space, simply increase the length.
self.length += 1
elif self.length == self.maxlen:
# No space, "remove" the first item.
self.start = (self.start + 1) % self.maxlen
else:
# This should never happen.
raise RuntimeError()
self.data[(self.start + self.length - 1) % self.maxlen] = v
def zeroed_observation(observation):
"""Return an array of zeros with same shape as given observation
# Argument
observation (list): List of observation
# Return
A np.ndarray of zeros with observation.shape
"""
if hasattr(observation, 'shape'):
return np.zeros(observation.shape)
elif hasattr(observation, '__iter__'):
out = []
for x in observation:
out.append(zeroed_observation(x))
return out
else:
return 0.
class Memory(object):
def __init__(self, window_length, ignore_episode_boundaries=False):
self.window_length = window_length
self.ignore_episode_boundaries = ignore_episode_boundaries
self.recent_observations = deque(maxlen=window_length)
self.recent_terminals = deque(maxlen=window_length)
def sample(self, batch_size, batch_idxs=None):
raise NotImplementedError()
def append(self, observation, action, reward, terminal, training=True):
self.recent_observations.append(observation)
self.recent_terminals.append(terminal)
def get_recent_state(self, current_observation):
"""Return list of last observations
# Argument
current_observation (object): Last observation
# Returns
A list of the last observations
"""
# This code is slightly complicated by the fact that subsequent observations might be
# from different episodes. We ensure that an experience never spans multiple episodes.
# This is probably not that important in practice but it seems cleaner.
state = [current_observation]
idx = len(self.recent_observations) - 1
for offset in range(0, self.window_length - 1):
current_idx = idx - offset
current_terminal = self.recent_terminals[current_idx - 1] if current_idx - 1 >= 0 else False
if current_idx < 0 or (not self.ignore_episode_boundaries and current_terminal):
# The previously handled observation was terminal, don't add the current one.
# Otherwise we would leak into a different episode.
break
state.insert(0, self.recent_observations[current_idx])
while len(state) < self.window_length:
state.insert(0, zeroed_observation(state[0]))
return state
def get_config(self):
"""Return configuration (window_length, ignore_episode_boundaries) for Memory
# Return
A dict with keys window_length and ignore_episode_boundaries
"""
config = {
'window_length': self.window_length,
'ignore_episode_boundaries': self.ignore_episode_boundaries,
}
return config
class SequentialMemory(Memory):
def __init__(self, limit, **kwargs):
super(SequentialMemory, self).__init__(**kwargs)
self.limit = limit
# Do not use deque to implement the memory. This data structure may seem convenient but
# it is way too slow on random access. Instead, we use our own ring buffer implementation.
self.actions = RingBuffer(limit)
self.rewards = RingBuffer(limit)
self.terminals = RingBuffer(limit)
self.observations = RingBuffer(limit)
def sample(self, batch_size, batch_idxs=None):
"""Return a randomized batch of experiences
# Argument
batch_size (int): Size of the all batch
batch_idxs (int): Indexes to extract
# Returns
A list of experiences randomly selected
"""
# It is not possible to tell whether the first state in the memory is terminal, because it
# would require access to the "terminal" flag associated to the previous state. As a result
# we will never return this first state (only using `self.terminals[0]` to know whether the
# second state is terminal).
# In addition we need enough entries to fill the desired window length.
assert self.nb_entries >= self.window_length + 2, 'not enough entries in the memory'
if batch_idxs is None:
# Draw random indexes such that we have enough entries before each index to fill the
# desired window length.
batch_idxs = sample_batch_indexes(
self.window_length, self.nb_entries - 1, size=batch_size)
batch_idxs = np.array(batch_idxs) + 1
assert np.min(batch_idxs) >= self.window_length + 1
assert np.max(batch_idxs) < self.nb_entries
assert len(batch_idxs) == batch_size
# Create experiences
experiences = []
for idx in batch_idxs:
terminal0 = self.terminals[idx - 2]
while terminal0:
# Skip this transition because the environment was reset here. Select a new, random
# transition and use this instead. This may cause the batch to contain the same
# transition twice.
idx = sample_batch_indexes(self.window_length + 1, self.nb_entries, size=1)[0]
terminal0 = self.terminals[idx - 2]
assert self.window_length + 1 <= idx < self.nb_entries
# This code is slightly complicated by the fact that subsequent observations might be
# from different episodes. We ensure that an experience never spans multiple episodes.
# This is probably not that important in practice but it seems cleaner.
state0 = [self.observations[idx - 1]]
for offset in range(0, self.window_length - 1):
current_idx = idx - 2 - offset
assert current_idx >= 1
current_terminal = self.terminals[current_idx - 1]
if current_terminal and not self.ignore_episode_boundaries:
# The previously handled observation was terminal, don't add the current one.
# Otherwise we would leak into a different episode.
break
state0.insert(0, self.observations[current_idx])
while len(state0) < self.window_length:
state0.insert(0, zeroed_observation(state0[0]))
action = self.actions[idx - 1]
reward = self.rewards[idx - 1]
terminal1 = self.terminals[idx - 1]
# Okay, now we need to create the follow-up state. This is state0 shifted on timestep
# to the right. Again, we need to be careful to not include an observation from the next
# episode if the last state is terminal.
state1 = [np.copy(x) for x in state0[1:]]
state1.append(self.observations[idx])
assert len(state0) == self.window_length
assert len(state1) == len(state0)
experiences.append(Experience(state0=state0, action=action, reward=reward,
state1=state1, terminal1=terminal1, error = None))
assert len(experiences) == batch_size
return experiences
def append(self, observation, action, reward, terminal, training=True):
"""Append an observation to the memory
# Argument
observation (dict): Observation returned by environment
action (int): Action taken to obtain this observation
reward (float): Reward obtained by taking this action
terminal (boolean): Is the state terminal
"""
super(SequentialMemory, self).append(observation, action, reward, terminal, training=training)
# This needs to be understood as follows: in `observation`, take `action`, obtain `reward`
# and weather the next state is `terminal` or not.
if training:
self.observations.append(observation)
self.actions.append(action)
self.rewards.append(reward)
self.terminals.append(terminal)
@property
def nb_entries(self):
"""Return number of observations
# Returns
Number of observations
"""
return len(self.observations)
def get_config(self):
"""Return configurations of SequentialMemory
# Returns
Dict of config
"""
config = super(SequentialMemory, self).get_config()
config['limit'] = self.limit
return config
class EpisodeParameterMemory(Memory):
def __init__(self, limit, **kwargs):
super(EpisodeParameterMemory, self).__init__(**kwargs)
self.limit = limit
self.params = RingBuffer(limit)
self.intermediate_rewards = []
self.total_rewards = RingBuffer(limit)
def sample(self, batch_size, batch_idxs=None):
"""Return a randomized batch of params and rewards
# Argument
batch_size (int): Size of the all batch
batch_idxs (int): Indexes to extract
# Returns
A list of params randomly selected and a list of associated rewards
"""
if batch_idxs is None:
batch_idxs = sample_batch_indexes(0, self.nb_entries, size=batch_size)
assert len(batch_idxs) == batch_size
batch_params = []
batch_total_rewards = []
for idx in batch_idxs:
batch_params.append(self.params[idx])
batch_total_rewards.append(self.total_rewards[idx])
return batch_params, batch_total_rewards
def append(self, observation, action, reward, terminal, training=True):
"""Append a reward to the memory
# Argument
observation (dict): Observation returned by environment
action (int): Action taken to obtain this observation
reward (float): Reward obtained by taking this action
terminal (boolean): Is the state terminal
"""
super(EpisodeParameterMemory, self).append(observation, action, reward, terminal, training=training)
if training:
self.intermediate_rewards.append(reward)
def finalize_episode(self, params):
"""Append an observation to the memory
# Argument
observation (dict): Observation returned by environment
action (int): Action taken to obtain this observation
reward (float): Reward obtained by taking this action
terminal (boolean): Is the state terminal
"""
total_reward = sum(self.intermediate_rewards)
self.total_rewards.append(total_reward)
self.params.append(params)
self.intermediate_rewards = []
@property
def nb_entries(self):
"""Return number of episode rewards
# Returns
Number of episode rewards
"""
return len(self.total_rewards)
def get_config(self):
"""Return configurations of SequentialMemory
# Returns
Dict of config
"""
config = super(SequentialMemory, self).get_config()
config['limit'] = self.limit
return config
import random
from SumTree import SumTree
class PER: # stored as ( s, a, r, s_ ) in SumTree
e = 0.01
a = 0.6
beta = 0.4
beta_increment_per_sampling = 0.001
def __init__(self, limit):
self.tree = SumTree(limit)
self.limit = limit
def _get_priority(self, error):
return (np.abs(error) + self.e) ** self.a
def append(self, observation, action, reward, terminal, error, next_state):
sample = (observation, action, reward, terminal, error, next_state)
p = self._get_priority(error)
self.tree.add(p, sample)
def sample(self, n):
batch = []
idxs = []
segment = self.tree.total() / n
priorities = []
self.beta = np.min([1., self.beta + self.beta_increment_per_sampling])
for i in range(n):
a = segment * i
b = segment * (i + 1)
s = random.uniform(a, b)
(idx, p, data) = self.tree.get(s)
priorities.append(p)
batch.append(Experience(state0=data[0], action=data[1], reward = data[2], terminal1 = data[3], error = data[4], state1=data[5]))
idxs.append(idx)
sampling_probabilities = priorities / self.tree.total()
is_weight = np.power(self.tree.n_entries * sampling_probabilities, -self.beta)
is_weight /= is_weight.max()
return batch, idxs, is_weight
def update(self, idxs, errors):
_ = [self.tree.update(idx, self._get_priority(error)) for (error, idx) in zip(errors, idxs)]
@property
def nb_entries(self):
return self.tree.total()