-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
62 lines (51 loc) · 1.2 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import pygame
pygame.init()
# Display Settings
UTILITY_FONT_SIZE = 15
UTILITY_OFFSET = (4, 14)
POLICY_FONT_SIZE = 30
POLICY_OFFSET = (17, 5)
RATIO = 1
POLICY_FONT = pygame.font.Font("assets/seguisym.ttf", int(POLICY_FONT_SIZE * RATIO))
UTILITY_FONT = pygame.font.Font("assets/seguisym.ttf", int(UTILITY_FONT_SIZE * RATIO))
block_size=50
width=300
height=300
# Value Iteration
vi_gamma = 0.99
vi_c = 0.1
MAX_REWARD = 1
vi_epsilon = vi_c * MAX_REWARD
# Policy Iteration
pi_gamma = 0.99
pi_k = 100
# Q Learning
q_learning_gamma = 0.99
q_learning_step_size = 0.1
q_learning_num_episodes = 50000
q_learning_num_steps = 100
q_learning_epsilon = 0.25
# Expected SARSA
expected_sarsa_gamma = 0.99
expected_sarsa_step_size = 0.1
expected_sarsa_num_episodes = 50000
expected_sarsa_num_steps = 100
expected_sarsa_epsilon = 0.1
# SARSA
sarsa_gamma = 0.99
sarsa_step_size = 0.1
sarsa_num_episodes = 50000
sarsa_num_steps = 100
sarsa_epsilon = 0.1
# Monte Carlo
monte_carlo_gamma = 0.99
monte_carlo_num_episodes = 100000
monte_carlo_num_steps = 1000
monte_carlo_epsilon = 0.1
# Dyna Q
dyna_q_gamma = 0.99
dyna_q_step_size = 0.1
dyna_q_num_episodes = 50000
dyna_q_num_steps = 100
dyna_q_epsilon = 0.25
dyna_q_planning_steps = 100