-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpinecone_db_setting2.py
66 lines (54 loc) · 2.31 KB
/
pinecone_db_setting2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_pinecone import PineconeVectorStore
from sentence_transformers import SentenceTransformer
from pinecone import Pinecone, ServerlessSpec
# 환경 변수 설정
folder_path = "/home/compu/KDH/langchain/Legal-advice-chatbot-with-RAG/document"
# os.environ['PINECONE_API_KEY'] = ''
pc = Pinecone(
api_key=os.environ.get("PINECONE_API_KEY")
)
# 폴더 내 모든 텍스트 파일 로드 및 문서 분할
all_docs = []
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
for filename in os.listdir(folder_path):
if filename.endswith(".txt"):
file_path = os.path.join(folder_path, filename)
loader = TextLoader(file_path)
documents = loader.load()
docs = text_splitter.split_documents(documents)
case_id = filename.split('_')[-1].split('.')[0]
with open(file_path, 'r', encoding='utf-8') as file:
text_content = file.read()
for doc in docs:
doc.metadata = {"case_id": case_id, "text": text_content}
all_docs.extend(docs)
# break
# SentenceTransformer 모델 로드
model = SentenceTransformer('jhgan/ko-sroberta-multitask')
# 문서 임베딩
def embed_documents(docs):
embeddings = [model.encode(doc.page_content) for doc in docs]
return embeddings
embeddings = embed_documents(all_docs)
# # Pinecone 벡터 스토어에 업로드
index_name = "vector-db"
# # if index_name not in pinecone.list_indexes():
# # pinecone.create_index(index_name, dimension=embeddings[0].shape[0])
index = pc.Index(index_name)
# 문서와 임베딩을 인덱스에 추가
vectors = [ {"id" : str(i), "values": emb, "metadata": doc.metadata} for i, (doc, emb) in enumerate(zip(all_docs, embeddings))]
index.upsert(vectors)
### 예시 쿼리 수행
query = "저는 이번에 자가격리 법을 위반했어용"
query_embedding = model.encode(query).tolist()
results = index.query(vector=query_embedding, top_k=3)
for match in results['matches']:
doc_id = (match['id'])
print(doc_id)
temp = index.fetch(ids = [doc_id])
print('case_id:', temp['vectors'][doc_id]['metadata']['case_id'])
print('text:', temp['vectors'][doc_id]['metadata']['text'])
print()