From 25e0a96e9192408bfed19607a1ec447166eeaaad Mon Sep 17 00:00:00 2001 From: cortespea Date: Mon, 17 Jun 2024 10:59:56 -0500 Subject: [PATCH] improvements to aerated-bioreactor/distillation/plots --- Bioindustrial-Park | 2 +- ...cetic_acid_reactive_purification_system.py | 178 ++++++++++++ benchmark/lactic_acid_purification_system.py | 34 ++- biosteam/_settings.py | 5 +- biosteam/facilities/_boiler_turbogenerator.py | 65 +++-- biosteam/plots/plots.py | 42 ++- biosteam/plots/utils.py | 4 +- biosteam/process_tools/process_model.py | 3 +- biosteam/units/aerated_bioreactor.py | 53 ++-- biosteam/units/design_tools/aeration.py | 26 +- biosteam/units/distillation.py | 17 +- biosteam/units/stage.py | 264 ++++++++---------- tests/test_equilibrium_stages.py | 163 ++++++++++- thermosteam | 2 +- 14 files changed, 615 insertions(+), 243 deletions(-) create mode 100644 benchmark/acetic_acid_reactive_purification_system.py diff --git a/Bioindustrial-Park b/Bioindustrial-Park index ab0aa3ac..978706e6 160000 --- a/Bioindustrial-Park +++ b/Bioindustrial-Park @@ -1 +1 @@ -Subproject commit ab0aa3ac6d3b8510b230d7b9f0fca6479316843e +Subproject commit 978706e698cdd88626d916a120c910066bc307e7 diff --git a/benchmark/acetic_acid_reactive_purification_system.py b/benchmark/acetic_acid_reactive_purification_system.py new file mode 100644 index 00000000..59c0a81c --- /dev/null +++ b/benchmark/acetic_acid_reactive_purification_system.py @@ -0,0 +1,178 @@ +# -*- coding: utf-8 -*- +""" +Created on Sat Mar 16 13:38:11 2024 + +@author: cortespea +""" +import thermosteam as tmo +import biosteam as bst +import numpy as np +from thermosteam.constants import R +from math import exp +try: + from .profile import register +except: + def register(*args, **kwargs): + return lambda f: f + +__all__ = ( + 'create_system_acetic_acid_reactive_purification', +) + +@register( + 'acetic_acid_reactive_purification', 'Acetic acid reactive purification', + 10, [2, 4, 6, 8, 10], 'AA\nr. sep.' +) +def create_system_acetic_acid_reactive_purification(alg='sequential modular'): + bst.settings.set_thermo(['Water', 'AceticAcid', 'MethylAcetate', 'Methanol'], cache=True) + Gamma = tmo.equilibrium.DortmundActivityCoefficients(bst.settings.chemicals) + class Esterification(bst.KineticReaction): + def volume(self, stream): # kg of catalyst + rho_cat = 770 # kg / m3 + liquid_volume = self.liquid_volume + catalyst_volume = 0.5 * liquid_volume + catalyst_mass = catalyst_volume * rho_cat + return catalyst_mass + + def rate(self, stream): # kmol/kg-catalyst/hr + K_AcOH = 3.15 + K_MeOH = 5.64 + K_MeOAc = 4.15 + K_H2O = 5.24 + K_adsorption = np.array([K_H2O, K_AcOH, K_MeOAc, K_MeOH]) + MWs = stream.chemicals.MW + k0f = 8.497e6 + EAf = 60.47 + k0r = 6.127e5 + EAr = 63.73 + T = stream.T + mol = stream.mol.to_array() + F_mol = stream.F_mol + if not F_mol: return 0 + x = mol / F_mol + gamma = Gamma(x, T) + activity = gamma * x + a = K_adsorption * activity / MWs + H2O, LA, BuLA, BuOH = activity + kf = k0f * exp(-EAf / (R * T)) + kr = k0r * exp(-EAr / (R * T)) + a_sum = sum(a) + return 3600 * (kf * LA * BuOH - kr * BuLA * H2O) / (a_sum * a_sum) # kmol / kg-catalyst / hr + + with bst.System(algorithm=alg) as sys: + feed = bst.Stream( + 'feed', + LacticAcid=4.174, + Water=5.470, + ) + feed.vle(V=0.5, P=101325) + makeup_butanol = bst.Stream('makeup_butanol', Butanol=1) + makeup_butanol.T = makeup_butanol.bubble_point_at_P().T + recycle_butanol = bst.Stream('recycle_butanol') + esterification_reflux = bst.Stream('esterification_reflux') + esterification = bst.MESHDistillation( + 'esterification', + ins=(feed, makeup_butanol, recycle_butanol, esterification_reflux), + outs=('empty', 'bottoms', 'esterification_distillate'), + N_stages=6, + feed_stages=(3, 3, 3, 0), + stage_specifications={ + 5: ('Boilup', 1), + 0: ('Boilup', 0), + }, + liquid_side_draws={ + 0: 1, + }, + stage_reactions={ + i: Esterification('LacticAcid + Butanol -> Water + ButylLactate', reactant='LacticAcid') + for i in range(1, 5) + }, + maxiter=10, + # LHK=('LacticAcid', 'Butanol'), + LHK=('Butanol', 'ButylLactate'), + P=0.3 * 101325, + ) + @esterification.add_specification(run=True) + def adjust_flow(): + target = 5.85 + makeup_butanol.imol['Butanol'] = max(target - recycle_butanol.imol['Butanol'], 0) + + esterification.simulate() + for i in esterification.stages: print(i.Hnet) + esterification.show() + breakpoint() + # esterification.simulate() + # for i in esterification.stages: print(i.Hnet) + # esterification.stage_reactions={ + # i: Esterification('LacticAcid + Butanol -> Water + ButylLactate', reactant='LacticAcid') + # for i in range(1, 17) + # } + # esterification.LHK=('Butanol', 'ButylLactate') + # breakpoint() + # esterification.simulate() + esterification_settler = bst.StageEquilibrium( + 'esterification_settler', + ins=(esterification-2), + outs=(esterification_reflux, 'water_rich'), + phases=('L', 'l'), + top_chemical='Butanol', + ) + water_distiller = bst.BinaryDistillation( + ins=esterification_settler-1, outs=('water_rich_azeotrope', 'water'), + x_bot=0.0001, y_top=0.2, k=1.2, Rmin=0.01, + LHK=('Butanol', 'Water'), + ) + splitter = bst.Splitter(ins=water_distiller-1, split=0.5) # TODO: optimize split + hydrolysis_reflux = bst.Stream('hydrolysis_reflux') + hydrolysis = bst.MESHDistillation( + 'hydrolysis', + ins=(esterification-1, splitter-0, hydrolysis_reflux), + outs=('empty', 'lactic_acid', 'hydrolysis_distillate'), + N_stages=53, + feed_stages=(27, 50, 0), + stage_specifications={ + 0: ('Boilup', 0), + 52: ('Boilup', 1), + }, + liquid_side_draws={ + 0: 1.0, + }, + stage_reactions={ + i: Esterification('LacticAcid + Butanol -> Water + ButylLactate', reactant='LacticAcid') + for i in range(1, 52) # It will run in reverse + }, + P=101325, + LHK=('Butanol', 'LacticAcid'), + ) + + # @esterification.add_specification(run=True) + # def adjust_flow(): + # target = 5.85 + # makeup_butanol.imol['Butanol'] = max(target - recycle_butanol.imol['Butanol'], 0) + + # Decanter + butanol_rich_azeotrope = bst.Stream('butanol_rich_azeotrope') + hydrolysis_settler = bst.StageEquilibrium( + 'settler', + ins=(hydrolysis-2, water_distiller-0, butanol_rich_azeotrope), + outs=('butanol_rich_extract', hydrolysis_reflux), + phases=('L', 'l'), + top_chemical='Butanol', + T=310, + ) + + # Butanol purification + butanol_distiller = bst.BinaryDistillation( + ins=(hydrolysis_settler-0), + outs=(butanol_rich_azeotrope, recycle_butanol), + x_bot=0.0001, y_top=0.6, k=1.2, Rmin=0.01, + LHK=('Water', 'Butanol'), + ) + + return sys + +if __name__ == '__main__': + sys = create_system_acetic_acid_reactive_purification() + sys.flatten() + sys.diagram() + sys.simulate() \ No newline at end of file diff --git a/benchmark/lactic_acid_purification_system.py b/benchmark/lactic_acid_purification_system.py index 5c2f9837..09e76edf 100644 --- a/benchmark/lactic_acid_purification_system.py +++ b/benchmark/lactic_acid_purification_system.py @@ -39,7 +39,7 @@ def rate(self, stream): # kmol/kg-catalyst/hr kf = 2.59e4 * exp(-5.340e4 / (R * T)) kr = 3.80e3 * exp(-5.224e4 / (R * T)) H2O, LA, BuLA, BuOH = stream.mol / stream.F_mol - return self.stoichiometry * 3600 * (kf * LA * BuOH - kr * BuLA * H2O) # kmol / kg-catalyst / hr + return 3600 * (kf * LA * BuOH - kr * BuLA * H2O) # kmol / kg-catalyst / hr with bst.System(algorithm=alg) as sys: feed = bst.Stream( @@ -47,27 +47,30 @@ def rate(self, stream): # kmol/kg-catalyst/hr LacticAcid=4.174, Water=5.470, ) - makeup_butanol = bst.Stream('makeup_butanol') + feed.vle(V=0.5, P=101325) + makeup_butanol = bst.Stream('makeup_butanol', Butanol=1) + makeup_butanol.T = makeup_butanol.bubble_point_at_P().T recycle_butanol = bst.Stream('recycle_butanol') esterification_reflux = bst.Stream('esterification_reflux') esterification = bst.MESHDistillation( 'esterification', ins=(feed, makeup_butanol, recycle_butanol, esterification_reflux), outs=('empty', 'bottoms', 'esterification_distillate'), - N_stages=17, - feed_stages=(1, 16, 16, 0), + N_stages=6, + feed_stages=(3, 3, 3, 0), stage_specifications={ - 16: ('Boilup', 1), + 5: ('Boilup', 1), 0: ('Boilup', 0), }, liquid_side_draws={ - 0: 1.0, + 0: 1, }, stage_reactions={ i: Esterification('LacticAcid + Butanol -> Water + ButylLactate', reactant='LacticAcid') - for i in range(1, 17) + for i in range(1, 5) }, - maxiter=200, + maxiter=10, + # LHK=('LacticAcid', 'Butanol'), LHK=('Butanol', 'ButylLactate'), P=0.3 * 101325, ) @@ -75,7 +78,20 @@ def rate(self, stream): # kmol/kg-catalyst/hr def adjust_flow(): target = 5.85 makeup_butanol.imol['Butanol'] = max(target - recycle_butanol.imol['Butanol'], 0) - + + esterification.simulate() + for i in esterification.stages: print(i.Hnet) + esterification.show() + breakpoint() + # esterification.simulate() + # for i in esterification.stages: print(i.Hnet) + # esterification.stage_reactions={ + # i: Esterification('LacticAcid + Butanol -> Water + ButylLactate', reactant='LacticAcid') + # for i in range(1, 17) + # } + # esterification.LHK=('Butanol', 'ButylLactate') + # breakpoint() + # esterification.simulate() esterification_settler = bst.StageEquilibrium( 'esterification_settler', ins=(esterification-2), diff --git a/biosteam/_settings.py b/biosteam/_settings.py index bcffdba7..a4a03d42 100644 --- a/biosteam/_settings.py +++ b/biosteam/_settings.py @@ -32,7 +32,7 @@ def {flowmethname}(self): get_unit_utility_cost_executable = ''' def {costmethname}(self): """Return the {docname} cost [USD/hr].""" - return bst.stream_prices[name] * self.{flowmethname}() + return bst.stream_prices[{name}] * self.{flowmethname}() bst.Unit.{costmethname} = {costmethname} ''' @@ -199,7 +199,8 @@ def define_allocation_property( # %% Register stream utilities -settings.register_utility('Natural gas', 0.218) +settings.register_utility('Fuel', 0.218) # Natural gas +settings.register_utility('Natural gas', 0.218) # Natural gas settings.register_utility('Ash disposal', -0.0318) settings.register_utility('Reverse osmosis water', 5.6e-4) settings.register_utility('Process water', 2.7e-4) diff --git a/biosteam/facilities/_boiler_turbogenerator.py b/biosteam/facilities/_boiler_turbogenerator.py index ae8af6d4..9b2e59da 100644 --- a/biosteam/facilities/_boiler_turbogenerator.py +++ b/biosteam/facilities/_boiler_turbogenerator.py @@ -40,7 +40,7 @@ class BoilerTurbogenerator(bst.Facility): * [0] Liquid/solid feed that will be burned. * [1] Gas feed that will be burned. * [2] Make-up water. - * [3] Natural gas to satisfy steam and power requirement. + * [3] Natural gas/fuel to satisfy steam and electricity demand. * [4] Lime for flue gas desulfurization. * [5] Boiler chemicals. outs : @@ -55,7 +55,9 @@ class BoilerTurbogenerator(bst.Facility): Steam produced. Defaults to low pressure steam. other_agents = () : Iterable[UtilityAgent], optional Other steams produced. Defaults to all other heating agents. - natural_gas_price : float, optional + fuel_source : str, optional + Name fuel used to satisfy steam and electricity demand. Defaults to 'CH4'. + fuel_price : float, optional Price of natural gas [USD/kg]. Same as `bst.stream_utility_prices['Natural gas']`, which defaults to 0.218. ash_disposal_price : float, optional @@ -159,21 +161,25 @@ def __init__(self, ID='', ins=None, side_steam=None, agent=None, other_agents=None, + fuel_price=None, natural_gas_price=None, ash_disposal_price=None, T_emissions=None, satisfy_system_electricity_demand=None, boiler_efficiency_basis=None, + fuel_source=None, ): if boiler_efficiency_basis is None: boiler_efficiency_basis = 'LHV' if boiler_efficiency is None: boiler_efficiency = 0.80 if turbogenerator_efficiency is None: turbogenerator_efficiency = 0.85 if satisfy_system_electricity_demand is None: satisfy_system_electricity_demand = True + if fuel_source is None: fuel_source = 'CH4' bst.Facility.__init__(self, ID, ins, outs, thermo) settings = bst.settings self.boiler_efficiency_basis = boiler_efficiency_basis self.agent = agent = agent or settings.get_heating_agent('low_pressure_steam') - self.define_utility('Natural gas', self.natural_gas) + self.fuel_source = fuel_source + self.define_utility('Fuel', self.fuel) self.define_utility('Ash disposal', self.ash_disposal) self.boiler_efficiency = boiler_efficiency self.turbogenerator_efficiency = turbogenerator_efficiency @@ -183,7 +189,10 @@ def __init__(self, ID='', ins=None, self.side_steam = side_steam self.other_agents = [i for i in settings.heating_agents if i is not agent] if other_agents is None else other_agents self.T_emissions = self.agent.T if T_emissions is None else T_emissions # Assume no heat integration - if natural_gas_price is not None: self.natural_gas_price = natural_gas_price + if natural_gas_price is not None: + self.fuel_price = natural_gas_price + elif fuel_price is not None: + self.fuel_price = fuel_price if ash_disposal_price is not None: self.ash_disposal_price = ash_disposal_price self.satisfy_system_electricity_demand = satisfy_system_electricity_demand @@ -226,9 +235,10 @@ def makeup_water(self): return self.ins[2] @property - def natural_gas(self): - """[Stream] Natural gas to satisfy steam and electricity requirements.""" + def fuel(self): + """[Stream] Fuel used to satisfy steam and electricity requirements.""" return self.ins[3] + natural_gas = fuel @property def ash_disposal(self): @@ -236,13 +246,13 @@ def ash_disposal(self): return self.outs[2] @property - def natural_gas_price(self): + def fuel_price(self): """[Float] Price of natural gas, same as `bst.stream_utility_prices['Natural gas']`.""" - return bst.stream_utility_prices['Natural gas'] - - @natural_gas_price.setter - def natural_gas_price(self, new_price): - bst.stream_utility_prices['Natural gas'] = new_price + return bst.stream_utility_prices['Fuel'] + @fuel_price.setter + def fuel_price(self, new_price): + bst.stream_utility_prices['Fuel'] = new_price + natural_gas_price = fuel_price @property def ash_disposal_price(self): @@ -277,10 +287,11 @@ def _design(self): chemicals = self.chemicals self._load_utility_agents() mol_steam = sum([i.flow for i in self.steam_utilities]) - feed_solids, feed_gas, makeup_water, feed_CH4, lime, chems = self.ins - feed_CH4.phase = 'g' - feed_CH4.set_property('T', 60, 'degF') - feed_CH4.set_property('P', 14.73, 'psi') + feed_solids, feed_gas, makeup_water, fuel, lime, chems = self.ins + if self.fuel_source == 'CH4': + fuel.phase = 'g' + fuel.set_property('T', 60, 'degF') + fuel.set_property('P', 14.73, 'psi') emissions, blowdown_water, ash_disposal = self.outs if not lime.price: lime.price = 0.19937504680689402 @@ -300,21 +311,22 @@ def _design(self): self.combustion_reactions = combustion_rxns = chemicals.get_combustion_reactions() non_empty_feeds = [i for i in (feed_solids, feed_gas) if not i.isempty()] boiler_efficiency_basis = self.boiler_efficiency_basis - def calculate_excess_electricity_at_natual_gas_flow(natural_gas_flow): - if natural_gas_flow: - natural_gas_flow = abs(natural_gas_flow) - feed_CH4.imol['CH4'] = natural_gas_flow + fuel_source = self.fuel_source + def calculate_excess_electricity_at_natual_gas_flow(fuel_flow): + if fuel_flow: + fuel_flow = abs(fuel_flow) + fuel.imol[fuel_source] = fuel_flow else: - feed_CH4.empty() - emissions_mol[:] = feed_CH4.mol + fuel.empty() + emissions_mol[:] = fuel.mol for feed in non_empty_feeds: emissions_mol[:] += feed.mol combustion_rxns.force_reaction(emissions_mol) emissions.imol['O2'] = 0 if boiler_efficiency_basis == 'LHV': - H_combustion = feed_CH4.LHV + H_combustion = fuel.LHV for feed in non_empty_feeds: H_combustion += feed.LHV elif boiler_efficiency_basis == 'HHV': - H_combustion = feed_CH4.HHV + H_combustion = fuel.HHV for feed in non_empty_feeds: H_combustion += feed.HHV else: raise ValueError( @@ -339,11 +351,12 @@ def calculate_excess_electricity_at_natual_gas_flow(natural_gas_flow): else: return work - self._excess_electricity_without_natural_gas = excess_electricity = calculate_excess_electricity_at_natual_gas_flow(0) + self._excess_electricity_without_fuel = excess_electricity = calculate_excess_electricity_at_natual_gas_flow(0) if excess_electricity < 0: f = calculate_excess_electricity_at_natual_gas_flow lb = 0. - ub = - excess_electricity * 3600 / feed_CH4.chemicals.CH4.LHV + fuel.imol[fuel_source] = 1 + ub = - excess_electricity * 3600 / fuel.LHV while f(ub) < 0.: lb = ub ub *= 2 diff --git a/biosteam/plots/plots.py b/biosteam/plots/plots.py index abb42d21..b18fd99e 100644 --- a/biosteam/plots/plots.py +++ b/biosteam/plots/plots.py @@ -699,15 +699,17 @@ def plot_spearman_2d(rhos, top=None, name=None, color_wheel=None, index=None, class Box: __slots__ = ('axis', 'light', 'dark', '_position', '_baseline_position') - def __init__(self, axis, position=0, light=None, dark=None): + def __init__(self, axis, position=None, light=None, dark=None): self.axis = axis self.light = light self.dark = dark - self._baseline_position = self._position = position + if position is None: position = [0] + self._baseline_position = position[0] + self._position = position def get_position(self, shift=1): - self._position += shift - return self._position + self._position[0] += shift + return self._position[0] def reset(self): self._position = self._baseline_position @@ -849,6 +851,10 @@ def plot_kde(x, y, nbins=100, ax=None, fig=None, aspect_ratio=1.25, cmaps=None, xbox_width=None, ybox_width=None, **kwargs): axis_not_given = ax is None + xs = x if isinstance(x, (tuple, list)) else (x,) + ys = y if isinstance(y, (tuple, list)) else (y,) + N_xs = len(xs) + N_ys = len(ys) if axis_not_given: grid_kw = dict(height_ratios=[1, 8], width_ratios=[8, aspect_ratio]) fig, all_axes = plt.subplots( @@ -859,12 +865,30 @@ def plot_kde(x, y, nbins=100, ax=None, fig=None, ax = all_axes[1, 0] xbox_ax = all_axes[0, 0] ybox_ax = all_axes[1, 1] - xbox = Box(xbox_ax, **(xbox_kwargs or {})) - ybox = Box(ybox_ax, **(ybox_kwargs or {})) - xs = x if isinstance(x, tuple) else (x,) - ys = y if isinstance(y, tuple) else (y,) + if xbox is None: + if xbox_kwargs is None: xbox_kwargs = {} + position = [0] + if isinstance(xbox_kwargs, dict): + xboxes = [Box(xbox_ax, position, **xbox_kwargs)] * N_xs + else: + xboxes = [Box(xbox_ax, position, **i) for i in xbox_kwargs] + elif isinstance(xbox, Box): + xboxes = [xbox] * N_xs + else: + xboxes = xbox + if ybox is None: + if ybox_kwargs is None: ybox_kwargs = {} + position = [0] + if isinstance(ybox_kwargs, dict): + yboxes = [Box(ybox_ax, position, **ybox_kwargs)] * N_xs + else: + yboxes = [Box(ybox_ax, position, **i) for i in ybox_kwargs] + elif isinstance(ybox, Box): + yboxes = [ybox] * N_ys + else: + yboxes = ybox if cmaps is None: cmaps = len(xs) * [None] - for x, y, cmap in zip(xs, ys, cmaps): + for x, y, cmap, xbox, ybox in zip(xs, ys, cmaps, xboxes, yboxes): # Evaluate a gaussian kde on a regular grid of nbins x nbins over data extents k = kde.gaussian_kde([x, y]) z = k(np.vstack([x, y])) diff --git a/biosteam/plots/utils.py b/biosteam/plots/utils.py index cb46cccb..5bdfa5d5 100644 --- a/biosteam/plots/utils.py +++ b/biosteam/plots/utils.py @@ -75,9 +75,9 @@ def colorbar(self, fig, ax, colorplot, label=True, **cbarkwargs): # cbar_ax.locator_params(nbins=self.N_ticks) if label: if self.title_position == 'top': - cbar_ax.set_title(self.title, self.ylabelkwargs) + cbar_ax.set_title(self.title, **self.ylabelkwargs) else: - cbar_ax.set_ylabel(self.title, self.ylabelkwargs) + cbar_ax.set_ylabel(self.title, **self.ylabelkwargs) try: ylabels = [y.get_text() for y in cbar_ax.get_yticklabels()] ylabels = [(i if i[0].isdigit() else '-'+i[1:]) for i in ylabels] diff --git a/biosteam/process_tools/process_model.py b/biosteam/process_tools/process_model.py index aa8a41f4..5d1cfaac 100644 --- a/biosteam/process_tools/process_model.py +++ b/biosteam/process_tools/process_model.py @@ -46,4 +46,5 @@ def _info(self, p, m): def show(self, p=None, m=None): """Return information on p-parameters and m-metrics.""" print(self._info(p, m)) - _ipython_display_ = show \ No newline at end of file + _ipython_display_ = show + \ No newline at end of file diff --git a/biosteam/units/aerated_bioreactor.py b/biosteam/units/aerated_bioreactor.py index fd0c4d7e..3139f501 100644 --- a/biosteam/units/aerated_bioreactor.py +++ b/biosteam/units/aerated_bioreactor.py @@ -21,7 +21,7 @@ from scipy.constants import g import flexsolve as flx from warnings import filterwarnings, catch_warnings -from scipy.optimize import minimize_scalar, minimize, least_squares +from scipy.optimize import minimize_scalar, minimize, least_squares, differential_evolution from biosteam.units.design_tools import aeration __all__ = ( @@ -90,7 +90,7 @@ class AeratedBioreactor(StirredTankReactor): batch_default = True default_methods = { 'Stirred tank': 'Riet', - 'Bubble column': 'DeJesus', + 'Bubble column': 'Dewes', } def _init( self, reactions, theta_O2=0.5, Q_O2_consumption=None, @@ -129,19 +129,31 @@ def get_kLa(self): operating_time = self.tau / self.design_results.get('Batch time', 1.) N_reactors = self.parallel['self'] P = 1000 * self.kW_per_m3 * V # W - air_in = self.cooled_compressed_air + air_in = self.sparged_gas D = self.get_design_result('Diameter', 'm') F = air_in.get_total_flow('m3/s') / N_reactors / operating_time R = 0.5 * D A = pi * R * R self.superficial_gas_flow = U = F / A # m / s return aeration.kLa_stirred_Riet(P, V, U, **self.kLa_kwargs) # 1 / s + elif self.kLa is aeration.kla_bubcol_Dewes: + V = self.get_design_result('Reactor volume', 'm3') * self.V_wf + operating_time = self.tau / self.design_results.get('Batch time', 1.) + N_reactors = self.parallel['self'] + air_in = self.sparged_gas + D = self.get_design_result('Diameter', 'm') + F = air_in.get_total_flow('m3/s') / N_reactors / operating_time + R = 0.5 * D + A = pi * R * R + self.superficial_gas_flow = U = F / A # m / s + feed = self.ins[0] + return aeration.kla_bubcol_Dewes(U, feed.get_property('mu', 'mPa*s'), air_in.get_property('rho', 'kg/m3')) else: raise NotImplementedError('kLa method has not been implemented in BioSTEAM yet') def get_agitation_power(self, kLa): if self.kLa is aeration.kLa_stirred_Riet: - air_in = self.cooled_compressed_air + air_in = self.sparged_gas N_reactors = self.parallel['self'] operating_time = self.tau / self.design_results.get('Batch time', 1.) V = self.get_design_result('Reactor volume', 'm3') * self.V_wf @@ -174,7 +186,7 @@ def air(self): if i.phase == 'g': return i @property - def cooled_compressed_air(self): + def sparged_gas(self): return self.air_cooler.outs[0] @property @@ -216,7 +228,7 @@ def _run(self): if OUR > 0: effluent.imol['O2'] = 0. self._run_vent(vent, effluent) return - air_cc = self.cooled_compressed_air + air_cc = self.sparged_gas air_cc.copy_like(air) air_cc.P = compressor.P = self._inlet_air_pressure() air_cc.T = self.T @@ -257,7 +269,7 @@ def _run_reactions(self, effluent): self.reactions.force_reaction(effluent) def _solve_total_power(self, OUR): # For OTR = OUR [mol / s] - air_in = self.cooled_compressed_air + air_in = self.sparged_gas N_reactors = self.parallel['self'] operating_time = self.tau / self.design_results.get('Batch time', 1.) V = self.get_design_result('Reactor volume', 'm3') * self.V_wf @@ -289,7 +301,7 @@ def get_OTR(self): operating_time = self.tau / self.design_results.get('Batch time', 1.) N_reactors = self.parallel['self'] kLa = self.get_kLa() - air_in = self.cooled_compressed_air + air_in = self.sparged_gas vent = self.vent P_O2_air = air_in.get_property('P', 'bar') * air_in.imol['O2'] / air_in.F_mol P_O2_vent = vent.get_property('P', 'bar') * vent.imol['O2'] / vent.F_mol @@ -435,7 +447,10 @@ def _init(self, self.mixins = {} if mixins is None else mixins # dict[int, tuple[int]] Pairs of variable feed gas index and inlets that will be mixed. StirredTankReactor._init(self, **kwargs) if design is None: - design = 'Stirred tank' + if self.kW_per_m3 == 0: + design = 'Bubble column' + else: + design = 'Stirred tank' elif design not in aeration.kLa_method_names: raise ValueError( f"{design!r} is not a valid design; only " @@ -565,6 +580,7 @@ def load_flow_rates(F_feeds): run_auxiliaries() effluent.set_data(effluent_liquid_data) effluent.mix_from([self.sparged_gas, -s_consumed, s_produced, *liquid_feeds], energy_balance=False) + if (effluent.mol < 0).any(): breakpoint() vent.empty() self._run_vent(vent, effluent) @@ -574,7 +590,7 @@ def load_flow_rates(F_feeds): breakpoint() bst.Stream.sum(self.normal_gas_feeds, energy_balance=False) baseline_flows = baseline_feed.get_flow('mol/s', self.gas_substrates) - bounds = np.array([[max(SURs[i] - baseline_flows[i], 0), 5 * SURs[i]] for i in index]) + bounds = np.array([[max(1.01 * SURs[i] - baseline_flows[i], 0), 10 * SURs[i]] for i in index]) if self.optimize_power: def total_power_at_substrate_flow(F_substrates): load_flow_rates(F_substrates) @@ -595,13 +611,20 @@ def gas_flow_rate_objective(F_substrates): mask = STRs - F_ins > 0 STRs[mask] = F_ins[mask] diff = SURs - STRs + diff[diff > 0] *= 1e6 # Force transfer rate to meet uptake rate return (diff * diff).sum() f = gas_flow_rate_objective - bounds = bounds.T with catch_warnings(): filterwarnings('ignore') + bounds = bounds.T results = least_squares(f, 1.2 * SURs, bounds=bounds, ftol=SURs.min() * 1e-6) + # results = differential_evolution(f, bounds=bounds, tol=SURs.min() * 1e-6) + # print('----') + # print(results) + if getattr(self, 'debug', None): + breakpoint() + self._results = results load_flow_rates(results.x / x_substrates) @@ -641,14 +664,8 @@ def get_STRs(self): V = self.get_design_result('Reactor volume', 'm3') * self.V_wf operating_time = self.tau / self.design_results.get('Batch time', 1.) N_reactors = self.parallel['self'] - P = 1000 * self.kW_per_m3 * V # W gas_in = self.sparged_gas - D = self.get_design_result('Diameter', 'm') - F = gas_in.get_total_flow('m3/s') / N_reactors / operating_time - R = 0.5 * D - A = pi * R * R - self.superficial_gas_flow = U = F / A # m / s - kLa = aeration.kLa_stirred_Riet(P, V, U, **self.kLa_kwargs) # 1 / s + kLa = self.get_kLa() # 1 / s vent = self.vent P_gas = gas_in.get_property('P', 'bar') P_vent = vent.get_property('P', 'bar') diff --git a/biosteam/units/design_tools/aeration.py b/biosteam/units/design_tools/aeration.py index b7f7a410..41b6064a 100644 --- a/biosteam/units/design_tools/aeration.py +++ b/biosteam/units/design_tools/aeration.py @@ -10,6 +10,8 @@ .. autofunction:: biosteam.units.design_tools.aeration.C_L .. autofunction:: biosteam.units.design_tools.aeration.C_O2_L .. autofunction:: biosteam.units.design_tools.aeration.kLa_stirred_Riet +.. autofunction:: biosteam.units.design_tools.aeration.kla_stirred_Labik +.. autofunction:: biosteam.units.design_tools.aeration.kLa_stirred_Galaction .. autofunction:: biosteam.units.design_tools.aeration.kla_bubcol_Deshpande .. autofunction:: biosteam.units.design_tools.aeration.kla_bubcol_DeJesus .. autofunction:: biosteam.units.design_tools.aeration.kla_bubcol_Akita_Yoshida @@ -17,8 +19,7 @@ .. autofunction:: biosteam.units.design_tools.aeration.kla_bubcol_Seno .. autofunction:: biosteam.units.design_tools.aeration.kla_bubcol_Suh .. autofunction:: biosteam.units.design_tools.aeration.kla_bubcol_Shah -.. autofunction:: biosteam.units.design_tools.aeration.kla_stirred_Labik -.. autofunction:: biosteam.units.design_tools.aeration.kLa_stirred_Galaction +.. autofunction:: biosteam.units.design_tools.aeration.kla_bubcol_Dewes .. autofunction:: biosteam.units.design_tools.aeration.P_at_kLa_Riet References @@ -56,6 +57,8 @@ Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broths. Biochemical Engineering Journal, 20(1), 85–94. https://doi.org/10.1016/j.bej.2004.02.005 .. [11] Benz, G. T. Bioreactor Design for Chemical Engineers. AICHE CEP 2011, 21–26. +.. [12] Dewes, I., & Schumpe, A. (1997). Gas density effect on mass transfer in the slurry bubble column. + Chemical Engineering Science, 52(21–22), 4105–4109. https://doi.org/10.1016/S0009-2509(97)00252-2 """ @@ -395,31 +398,30 @@ def kla_bubcol_Suh(D, mu_l, rho_l, D_l, g, sigma_l, epsilon_g, V_g, V_l, coeffic kla = (D_l/(D**2)) * 0.018 * (mu_l/(rho_l * D_l))**(0.5) * ((g*rho_l*D**2)/sigma_l)**(0.75) * (g*D**3*rho_l**2/(mu_l**2))**(0.39)*(V_g/(sqrt(g*D)))**0.51 return kla + @register def kla_bubcol_Dewes(V_g, mu_l, rho_g): """ - Returns the KLa coefficient for a bubble column reactor based on the Dewes & Schumpe (1997) correlation. - ------- - Parameters: + Returns the KLa coefficient for a bubble column reactor based on the Dewes & Schumpe (1997) correlation [12]_. + + Parameters + ---------- V_g: float Superficial gas velocity, [m/s] mu_l: float Viscosity of the liquid, [mPa.s] rho_g: float Density of the gas, [kg/m^3] - ------- - References: - Dewes, I., & Schumpe, A. (1997). - Gas density effect on mass transfer in the slurry bubble column. - Chemical Engineering Science, 52(21–22), 4105–4109. https://doi.org/10.1016/S0009-2509(97)00252-2 - ------- - Notes: + + Notes + ----- This correlation is valid under the following range of values: D_c: 0.115 m -> Diameter of the column [m] H_l: 1.37 m -> Liquid height in the column [m] V_g: 0.01 - 0.08 m/s -> Superficial gas velocity [m/s] mu_l: 1.35 - 583 mPa.s -> Viscosity of the liquid [mPa.s] rho_g: 0.4 - 18.8 kg/m^3 -> Density of the gas [kg/m^3] + """ kla = V_g**0.90 * mu_l**(-0.55) * rho_g**0.46 diff --git a/biosteam/units/distillation.py b/biosteam/units/distillation.py index f5f5a7c8..917782d3 100644 --- a/biosteam/units/distillation.py +++ b/biosteam/units/distillation.py @@ -2536,14 +2536,14 @@ def _init(self, self._last_args = ( self.N_stages, self.feed_stages, self.vapor_side_draws, self.liquid_side_draws, self.use_cache, *self._ins, - self.partition_data, self.P, - reflux, boilup, + self.partition_data, self.P, self.stage_specifications, ) @property def reflux(self): - name, value = self.stage_specifications[0] - if name == 'Reflux': return value + if 0 in self.stage_specifications: + name, value = self.stage_specifications[0] + if name == 'Reflux': return value @reflux.setter def reflux(self, reflux): self.stage_specifications[0] = ('Reflux', reflux) @@ -2565,8 +2565,7 @@ def _setup(self): super()._setup() args = (self.N_stages, self.feed_stages, self.vapor_side_draws, self.liquid_side_draws, self.use_cache, *self._ins, - self.partition_data, self.P, - self.reflux, self.boilup) + self.partition_data, self.P, self.stage_specifications) if args != self._last_args: MultiStageEquilibrium._init( self, N_stages=self.N_stages, @@ -2668,8 +2667,8 @@ def _actual_stages(self): return self.N_stages, np.ceil(self.N_stages / eff) def update_liquid_holdup(self): - diameter = self.estimate_diameter() - hw = weir_height = diameter * self.weir_height * 12 # inches + diameter = self.estimate_diameter() + hw = weir_height = self._TS * self.weir_height * 0.0393701 # mm to inches area = diameter * diameter * pi / 4 b = 2/3 partitions = self.partitions @@ -2684,7 +2683,7 @@ def update_liquid_holdup(self): else: rho_V = vapor.rho rho_L = liquid.rho - active_area = area * (1 - partition.downcomer_area_fraction) + active_area = area * (1 - 2 * partition.downcomer_area_fraction) Ua = vapor.get_total_flow('ft3/s') / active_area Ks = Ua * sqrt(rho_V / (rho_L - rho_V)) # Capacity parameter Phi_e = exp(-4.257 * Ks**0.91) # Effective relative froth density diff --git a/biosteam/units/stage.py b/biosteam/units/stage.py index 67bf029f..17edb195 100644 --- a/biosteam/units/stage.py +++ b/biosteam/units/stage.py @@ -560,7 +560,7 @@ def _create_material_balance_equations(self): def _update_energy_variable(self, departure): phases = self.phases if phases == ('g', 'l'): - self.B += self.partition.B_relaxation_factor * departure + self.B += (1 - self.partition.B_relaxation_factor) * departure elif phases == ('L', 'l'): self.T = T = self.T + departure for i in self.outs: i.T = T @@ -591,10 +591,10 @@ class PhasePartition(Unit): _N_ins = 1 _N_outs = 2 strict_infeasibility_check = False - dmol_relaxation_factor = 0.5 - B_relaxation_factor = 0.5 - T_relaxation_factor = 0.5 - K_relaxation_factor = 0.5 + dmol_relaxation_factor = 0.9 + B_relaxation_factor = 0.9 + T_relaxation_factor = 0.9 + K_relaxation_factor = 0.9 def _init(self, phases, partition_data, top_chemical=None, reaction=None): self.partition_data = partition_data @@ -785,6 +785,11 @@ def _run_decoupled_reaction(self, P=None, relaxation_factor=None): f = self.dmol_relaxation_factor if relaxation_factor is None else relaxation_factor old = self.dmol new = self.reaction.conversion(bottom) + # mol = bottom.mol + # mask = (mol + old) < 0 + # if mask.any(): + # old *= (-mol[mask] / old[mask]).min() * (1 - 1e-6) + # assert (old + mol >= 0).all() self.dmol = f * old + (1 - f) * new def _run_lle(self, P=None, update=True, top_chemical=None): @@ -1065,16 +1070,16 @@ class MultiStageEquilibrium(Unit): """ _N_ins = 2 _N_outs = 2 - default_maxiter = 20 - default_max_attempts = 20 - default_fallback_maxiter = 1 + max_attempts = 5 + default_maxiter = 50 + default_fallback = None default_molar_tolerance = 1e-3 default_relative_molar_tolerance = 1e-6 default_algorithm = 'root' available_algorithms = {'root', 'optimize'} default_methods = { 'root': 'fixed-point', - 'optimize': 'SLSQP', + 'optimize': 'CG', 'SurPASS': 'differential evolution', } @@ -1084,9 +1089,9 @@ class MultiStageEquilibrium(Unit): 'wegstein': (flx.conditional_wegstein, True, {}), } optimize_options: dict[str, tuple[Callable, dict]] = { - 'SLSQP': (minimize, True, True, {'tol': 0.1, 'method': 'SLSQP'}), - 'CG': (minimize, False, False, {'tol': 1e-3, 'method': 'CG', 'options':{'maxiter': 500}}), - 'differential evolution': (differential_evolution, False, True, {'seed': 0, 'popsize': 12, 'tol': 1e-6}), + 'SLSQP': (minimize, True, True, {'tol': 0.1, 'method': 'SLSQP'}), # This one does not work + 'CG': (minimize, False, False, {'tol': 1e-3, 'method': 'CG', 'options':{'maxiter': 500}}), # This one is great + 'differential evolution': (differential_evolution, False, True, {'seed': 0, 'popsize': 12, 'tol': 1e-6}), # This works, but its extremely slow } SurPASS_options: dict[str, tuple[Callable, dict]] = { 'differential evolution': ( @@ -1313,8 +1318,8 @@ def _init(self, #: [int] Maximum number of iterations. self.maxiter = self.default_maxiter if maxiter is None else maxiter - #: [int] Maximum number of iterations for fallback algorithm. - self.fallback_maxiter = self.default_fallback_maxiter + #: tuple[str, str] Fallback algorithm and method. + self.fallback = self.default_fallback #: [float] Molar tolerance (kmol/hr) self.molar_tolerance = self.default_molar_tolerance @@ -1331,8 +1336,6 @@ def _init(self, self.method = self.default_methods[self.algorithm] if method is None else method self.inside_out = inside_out - - self.max_attempts = self.default_max_attempts @property def aggregated_stages(self): @@ -1553,7 +1556,6 @@ def outlet_stages(self): return outlet_stages def correct_overall_mass_balance(self): - return outmol = sum([i.mol for i in self.outs]) inmol = sum([i.mol for i in self.ins]) stage_reactions = self.stage_reactions @@ -1587,7 +1589,7 @@ def _feed_flows_and_conversion(self): dmol = p.dmol feed_mol = p.feed.mol pseudo_feed = feed_mol + dmol - mask = (pseudo_feed < 0) & (dmol < 0) + mask = (pseudo_feed < 0) if pseudo_feed[mask].any(): x = (-feed_mol[mask] / dmol[mask]).min() assert 0 <= x <= 1 @@ -1627,46 +1629,6 @@ def set_flow_rates(self, top_flows): partition.B = tnet / bnet for i in stage.splitters: i._run() - def set_flow_rates_old(self, top_flows): - top, bottom = self.multi_stream.phases - flow_tol = -1e-6 * self.multi_stream.mol - stages = self.stages - N_stages = self.N_stages - range_stages = range(N_stages) - index = self._update_index - top_flows[top_flows < 0.] = 0. - has_infeasible_flow = True - infeasible_checks = set() - while has_infeasible_flow: - has_infeasible_flow = False - for i in range_stages: - stage = stages[i] - partition = stage.partition - s_top, _ = partition.outs - s_top.mol[index] = top_flows[i] - if stage.top_split: stage.splitters[0]._run() - for i in range_stages: - stage = stages[i] - partition = stage.partition - s_top, s_bottom = partition.outs - bottom_flow = sum([i.mol for i in stage.ins]) - s_top.mol - mask = bottom_flow < 0. - if mask.any(): - has_infeasible_flow = (bottom_flow[mask] < flow_tol[mask]).any() - if i not in infeasible_checks and has_infeasible_flow: - infeasible_checks.add(i) - infeasible_index, = np.where(mask[index]) - # TODO: Find algebraic solution to keeping top flow rates within feasible region. - # This is only a temporary solution. - infeasible_flow = bottom_flow[mask] - top_flows[i, infeasible_index] += infeasible_flow - break - else: - has_infeasible_flow = False - bottom_flow[mask] = 0. - s_bottom.mol[:] = bottom_flow - if stage.bottom_split: stage.splitters[-1]._run() - def _run(self): if all([i.isempty() for i in self.ins]): for i in self.outs: i.empty() @@ -1674,63 +1636,41 @@ def _run(self): try: top_flow_rates = self.hot_start() algorithm = self.algorithm + if self._has_lle: + self._psuedo_equilibrium_options = tmo.equilibrium.LLE.pseudo_equilibrium_inner_loop_options.copy() + self._psuedo_equilibrium_options['xtol'] *= self.feed_flows.max() if algorithm == 'root': - self.converged = True + method = self.method + solver, conditional, options = self.root_options[method] + if not conditional: raise NotImplementedError(f'method {self.method!r} not implemented in BioSTEAM (yet)') for i in range(self.max_attempts): - self.attempt = i self.iter = 0 - self.fallback_iter = 0 - method = self.method - solver, conditional, options = self.root_options[method] - if conditional: - top_flow_rates = solver(self._conditional_iter, top_flow_rates) - else: - raise NotImplementedError(f'method {self.method!r} not implemented in BioSTEAM (yet)') - if method == 'fixed-point' and self.iter == self.maxiter: - top_flow_rates = flx.conditional_fixed_point( - self._sequential_iter, - top_flow_rates, - ) - if self.fallback_iter < self.fallback_maxiter: - break + top_flow_rates = solver(self._conditional_iter, top_flow_rates) + if self.iter == self.maxiter: + for i in self.stages: i._run() + for i in reversed(self.stages): i._run() else: break - else: - self.converged = False + if self.iter == self.maxiter and self.fallback and self.fallback != (self.algorithm, self.method): + algorithm, method = self.algorithm, self.method + self.algorithm, self.method = self.fallback + try: + self._run() + finally: + self.algorithm, self.method = algorithm, method + self.iter = 0 + top_flow_rates = solver(self._conditional_iter, top_flow_rates) + elif algorithm == 'sequential': + self.iter = 0 + top_flow_rates = flx.conditional_fixed_point( + self._sequential_iter, + top_flow_rates, + ) elif algorithm == 'optimize': solver, constraints, bounded, options = self.optimize_options[self.method] if constraints and bounded: raise NotImplementedError(f'optimize method {self.method!r} not implemented in BioSTEAM (yet)') - self.constraints = constraints = [] - stages = self.stages - m, n = self.N_stages, self._N_chemicals - last_stage = m - 1 - feed_flows, asplit_1, bsplit_1, _ = self._iter_args - for i, stage in enumerate(stages): - if i == 0: - args = (i,) - f = lambda x, i: feed_flows[i] - x[(i+1)*n:(i+2)*n] * asplit_1[i+1] - x[i*n:(i+1)*n] + 1e-6 - elif i == last_stage: - args_last = args - args = (i, f, args_last) - f = lambda x, i, f, args_last: feed_flows[i] + f(x, *args_last) - x[i*n:] + 1e-6 - else: - args_last = args - args = (i, f, args_last) - f = lambda x, i, f, args_last: feed_flows[i] + f(x, *args_last) - x[(i+1)*n:(i+2)*n] * asplit_1[i+1] - x[i*n:(i+1)*n] + 1e-6 - constraints.append( - dict(type='ineq', fun=f, args=args) - ) - result = solver( - self._energy_balance_error_at_top_flow_rates, - self.get_top_flow_rates_flat(), - constraints=constraints, - bounds=[(0, None)] * (m * n), - **options, - ) - self.set_flow_rates(result.x.reshape([m, n])) elif bounded and not constraints: - # raise NotImplementedError(f'optimize method {self.method!r} not implemented in BioSTEAM (yet)') self.iter = 0 partitions = self.partitions Sb, safe = bottoms_stripping_factors_safe( @@ -1754,8 +1694,8 @@ def _run(self): bounds, **options, ) + if self._has_lle: self.update_energy_balance_temperatures() elif not (constraints or bounded): - # raise NotImplementedError(f'optimize method {self.method!r} not implemented in BioSTEAM (yet)') self.iter = 0 partitions = self.partitions Sb, safe = bottoms_stripping_factors_safe( @@ -1785,11 +1725,12 @@ def _run(self): self.set_flow_rates( estimate_top_flow_rates(Sb, *self._iter_args, safe) ) + if self._has_lle: self.update_energy_balance_temperatures() else: raise RuntimeError( f'invalid algorithm {algorithm!r}, only {self.available_algorithms} are allowed' ) - self.correct_overall_mass_balance() + # self.correct_overall_mass_balance() except Exception as e: if self.use_cache: self.use_cache = False @@ -2140,7 +2081,7 @@ def get_energy_balance_phase_ratio_departures(self): hv[i] = top.h if Li == 0: top.phase = 'l' - hl[i] = bottom.h + hl[i] = top.h top.phase = 'g' else: hl[i] = bottom.h @@ -2171,7 +2112,7 @@ def get_energy_balance_phase_ratio_departures(self): def update_energy_balance_phase_ratio_departures(self): dBs = self.get_energy_balance_phase_ratio_departures() for i, dB in zip(self.partitions, dBs): - if i.B_specification is None: i.B += i.B_relaxation_factor * dB + if i.B_specification is None: i.B += (1 - i.B_relaxation_factor) * dB def update_energy_balance_temperatures(self): dTs = self.get_energy_balance_temperature_departures() @@ -2182,6 +2123,7 @@ def update_energy_balance_temperatures(self): partition = stage.partition partition.T += dT for i in partition.outs: i.T += dT + return dTs def run_mass_balance(self): partitions = self.partitions @@ -2291,17 +2233,34 @@ def _split_objective(self, splits): if not self._has_vle: raise NotImplementedError('only VLE objective function exists') self.set_flow_rates(top_flow_rates) P = self.P - for i in self.stages: - mixer = i.mixer - partition = i.partition - mixer.outs[0].mix_from( - mixer.ins, energy_balance=False, + stages = self.stages + if self._has_vle: + for i in stages: + mixer = i.mixer + partition = i.partition + mixer.outs[0].mix_from( + mixer.ins, energy_balance=False, + ) + mixer.outs[0].P = P + partition._run_decoupled_KTvle(P=P, K_relaxation_factor=0, T_relaxation_factor=0) + partition._run_decoupled_B() + T = partition.T + for i in (partition.outs + i.outs): i.T = T + energy_error = lambda stage: abs( + (sum([i.H for i in stage.outs]) - sum([i.H for i in stage.ins])) / sum([i.C for i in stage.outs]) ) - mixer.outs[0].P = P - partition._run_decoupled_KTvle(P=P, K_relaxation_factor=0, T_relaxation_factor=0) - partition._run_decoupled_B() - T = partition.T - for i in (partition.outs + i.outs): i.T = T + total_energy_error = sum([energy_error(stage) for stage in stages if stage.B_specification is None and stage.T_specification is None]) + else: + for i in range(5): + dTs = self.update_energy_balance_temperatures() + if np.abs(dTs).sum() < 1e-12: break + for i in self.stages: + mixer = i.mixer + partition = i.partition + mixer.outs[0].mix_from( + mixer.ins, energy_balance=False, + ) + partition._run_lle(update=False, P=P) partitions = self.partitions if Sb_index: Sb_new = np.array([1 / (partitions[i].K * partitions[i].B) for i in Sb_index]).flatten() @@ -2309,12 +2268,11 @@ def _split_objective(self, splits): Sb_new = np.array([1 / (i.K * i.B) for i in partitions]).flatten() splits_new = 1 / (Sb_new + 1) diff = splits_new - splits - energy_error = lambda stage: abs( - (sum([i.H for i in stage.outs]) - sum([i.H for i in stage.ins])) / sum([i.C for i in stage.outs]) - ) - total_energy_error = sum([energy_error(stage) for stage in self.stages if stage.B_specification is None and stage.T_specification is None]) total_split_error = np.abs(diff).sum() - total_error = total_split_error + total_energy_error / self.N_stages + if self._has_vle: + total_error = total_split_error + total_energy_error / self.N_stages + else: + total_error = total_split_error err = np.sqrt(total_error) return err @@ -2333,20 +2291,36 @@ def _lnSb_objective(self, lnSb): top_flow_rates = estimate_top_flow_rates( Sb, *self._iter_args, True ) - if not self._has_vle: raise NotImplementedError('only VLE objective function exists') self.set_flow_rates(top_flow_rates) + stages = self.stages P = self.P - for i in self.stages: - mixer = i.mixer - partition = i.partition - mixer.outs[0].mix_from( - mixer.ins, energy_balance=False, + if self._has_vle: + for i in stages: + mixer = i.mixer + partition = i.partition + mixer.outs[0].mix_from( + mixer.ins, energy_balance=False, + ) + mixer.outs[0].P = P + partition._run_decoupled_KTvle(P=P, K_relaxation_factor=0, T_relaxation_factor=0) + partition._run_decoupled_B() + T = partition.T + for i in (partition.outs + i.outs): i.T = T + energy_error = lambda stage: abs( + (sum([i.H for i in stage.outs]) - sum([i.H for i in stage.ins])) / sum([i.C for i in stage.outs]) ) - mixer.outs[0].P = P - partition._run_decoupled_KTvle(P=P, K_relaxation_factor=0, T_relaxation_factor=0) - partition._run_decoupled_B() - T = partition.T - for i in (partition.outs + i.outs): i.T = T + total_energy_error = sum([energy_error(stage) for stage in stages if stage.B_specification is None and stage.T_specification is None]) + else: + for i in range(5): + dTs = self.update_energy_balance_temperatures() + if np.abs(dTs).sum() < 1e-12: break + for i in self.stages: + mixer = i.mixer + partition = i.partition + mixer.outs[0].mix_from( + mixer.ins, energy_balance=False, + ) + partition._run_lle(update=False, P=P) partitions = self.partitions if Sb_index: Sb_new = np.array([1 / (partitions[i].K * partitions[i].B) for i in Sb_index]).flatten() @@ -2355,12 +2329,11 @@ def _lnSb_objective(self, lnSb): splits_new = 1 / (Sb_new + 1) splits = 1 / (Sb_original + 1) diff = splits_new - splits - energy_error = lambda stage: abs( - (sum([i.H for i in stage.outs]) - sum([i.H for i in stage.ins])) / sum([i.C for i in stage.outs]) - ) - total_energy_error = sum([energy_error(stage) for stage in self.stages if stage.B_specification is None and stage.T_specification is None]) total_split_error = np.abs(diff).sum() - total_error = total_split_error + total_energy_error / self.N_stages + if self._has_vle: + total_error = total_split_error + total_energy_error / self.N_stages + else: + total_error = total_split_error err = np.sqrt(total_error) return err @@ -2382,7 +2355,8 @@ def _iter(self, top_flow_rates): partition._run_decoupled_KTvle(P=P) T = partition.T for i in (partition.outs + i.outs): i.T = T - if partition.reaction: partition._run_decoupled_reaction(P=P) + if partition.reaction: + partition._run_decoupled_reaction(P=P) else: for i in stages: mixer = i.mixer @@ -2411,11 +2385,9 @@ def psuedo_equilibrium(top_flow_rates): partition._run_decoupled_Kgamma(P=P) self.interpolate_missing_variables() return self.run_mass_balance() - options = tmo.equilibrium.LLE.pseudo_equilibrium_inner_loop_options.copy() - options['xtol'] *= self.feed_flows.max() self.set_flow_rates( flx.fixed_point( - psuedo_equilibrium, top_flow_rates, **options, + psuedo_equilibrium, top_flow_rates, **self._psuedo_equilibrium_options, ) ) for i in stages: @@ -2531,7 +2503,7 @@ def _conditional_iter(self, top_flow_rates): return top_flow_rates_new, not_converged def _sequential_iter(self, top_flow_rates): - self.fallback_iter += 1 + self.iter += 1 self.set_flow_rates(top_flow_rates) for i in self.stages: i._run() for i in reversed(self.stages): i._run() @@ -2547,7 +2519,7 @@ def _sequential_iter(self, top_flow_rates): max_errors = np.maximum.reduce([abs(mol[nonzero_index]), abs(mol_new[nonzero_index])]) rmol_error = (mol_errors / max_errors).max() not_converged = ( - self.fallback_iter < self.fallback_maxiter and (mol_error > self.molar_tolerance + self.iter < self.maxiter and (mol_error > self.molar_tolerance or rmol_error > self.relative_molar_tolerance) ) else: diff --git a/tests/test_equilibrium_stages.py b/tests/test_equilibrium_stages.py index 122b887f..4c681f3f 100644 --- a/tests/test_equilibrium_stages.py +++ b/tests/test_equilibrium_stages.py @@ -3,6 +3,10 @@ """ import pytest import biosteam as bst +import thermosteam as tmo +from math import exp, log +import numpy as np +from thermosteam.constants import R from numpy.testing import assert_allclose def test_multi_stage_adiabatic_vle(): @@ -117,7 +121,7 @@ def test_multi_stage_adiabatic_vle(): rtol=0.01, ) -def test_reactive_distillation(): +def test_lactic_acid_ethanol_reactive_distillation(): import biosteam as bst from thermosteam.constants import R from math import exp @@ -137,7 +141,7 @@ def rate(self, stream): LaEt, La, H2O, EtOH = stream.mol / stream.F_mol return 3600 * (kf * La * EtOH - kr * LaEt * H2O) # kmol / kg-catalyst / hr - rxn = Esterification('LacticAcid + Ethanol -> H2O + EthylLactate') + rxn = Esterification('LacticAcid + Ethanol -> H2O + EthylLactate', reactant='LacticAcid') stream = bst.Stream( H2O=10, Ethanol=10, LacticAcid=2, T=355, ) @@ -158,10 +162,155 @@ def rate(self, stream): ) distillation.simulate() flows = [ - [6.575895653800856e-06, 3.6651391022703107e-09, - 3.1210737204600005, 8.043951319613521], - [0.019035234263940305, 2.0190418064944553, - 6.897968089699594, 1.9750904905460722], + [6.585111268569887e-06, 3.6465771244802687e-09, + 3.110437134095077, 8.015523262914513], + [0.019007540635984595, 1.9809858706061696, + 6.908576991652181, 1.9654626113382356], + ] + for i, j in zip(distillation.outs, flows): + assert_allclose(i.mol, j, rtol=1e-5, atol=1e-3) + sys = bst.System.from_units(units=[distillation]) + sys._setup() + sys.run_phenomena() + for i, j in zip(distillation.outs, flows): + assert_allclose(i.mol, j, rtol=1e-5, atol=1e-3) + +def test_acetic_acid_reactive_distillation(): + import biosteam as bst + import thermosteam as tmo + from thermosteam.constants import R + import numpy as np + from math import exp + from numpy.testing import assert_allclose + bst.settings.set_thermo(['Water', 'AceticAcid', 'MethylAcetate', 'Methanol'], cache=True) + Gamma = tmo.equilibrium.DortmundActivityCoefficients(bst.settings.chemicals) + class Esterification(bst.KineticReaction): + def volume(self, stream): # kg of catalyst + rho_cat = 770 # kg / m3 + liquid_volume = self.liquid_volume + catalyst_volume = 0.5 * liquid_volume + catalyst_mass = catalyst_volume * rho_cat + return catalyst_mass + + def rate(self, stream): # kmol/kg-catalyst/hr + F_mol = stream.F_mol + if not F_mol: return 0 + K_AcOH = 3.15 + K_MeOH = 5.64 + K_MeOAc = 4.15 + K_H2O = 5.24 + K_adsorption = np.array([K_H2O, K_AcOH, K_MeOAc, K_MeOH]) + MWs = stream.chemicals.MW + k0f = 8.497e6 + EAf = 60.47 + k0r = 6.127e5 + EAr = 63.73 + T = stream.T + mol = stream.mol + x = mol / F_mol + gamma = Gamma(x, T) + activity = gamma * x + a = K_adsorption * activity / MWs + H2O, LA, BuLA, BuOH = activity + kf = k0f * exp(-EAf / (R * T)) + kr = k0r * exp(-EAr / (R * T)) + a_sum = sum(a) + return 3600 * (kf * LA * BuOH - kr * BuLA * H2O) / (a_sum * a_sum) # kmol / kg-catalyst / hr + + methanol = bst.Stream( + Methanol=30, + ) + methanol.vle(V=1, P=101325) + acetic_acid = bst.Stream( + AceticAcid=10, Water=200 + ) + acetic_acid.vle(V=0, P=101325) + stage_reactions = { + i: Esterification('AceticAcid + Methanol -> MethylAcetate + Water', reactant='AceticAcid') + for i in range(3, 9) + } + distillation = bst.MESHDistillation( + N_stages=10, + ins=[methanol, acetic_acid], + feed_stages=[3, 8], + outs=['distillate', 'bottoms_product'], + full_condenser=False, + reflux=1.0, + boilup=2.0, + use_cache=True, + LHK=('MethylAcetate', 'Water'), + stage_reactions=stage_reactions, + method='fixed-point', + maxiter=100, + ) + distillation.simulate() + flows = [ + [6.585111268569887e-06, 3.6465771244802687e-09, + 3.110437134095077, 8.015523262914513], + [0.019007540635984595, 1.9809858706061696, + 6.908576991652181, 1.9654626113382356], + ] + for i, j in zip(distillation.outs, flows): + assert_allclose(i.mol, j, rtol=1e-5, atol=1e-3) + sys = bst.System.from_units(units=[distillation]) + sys._setup() + sys.run_phenomena() + for i, j in zip(distillation.outs, flows): + assert_allclose(i.mol, j, rtol=1e-5, atol=1e-3) + + +def test_lactic_acid_butanol_reactive_distillation(): + import biosteam as bst + from thermosteam.constants import R + from math import exp + from numpy.testing import assert_allclose + bst.settings.set_thermo(['Water', 'LacticAcid', 'ButylLactate', 'Butanol'], cache=True) + + class Esterification(bst.KineticReaction): + + def volume(self, stream): # kg of catalyst + rho_cat = 770 # kg / m3 + liquid_volume = self.liquid_volume + catalyst_volume = 0.5 * liquid_volume + catalyst_mass = catalyst_volume * rho_cat + return catalyst_mass + + def rate(self, stream): # kmol/kg-catalyst/hr + T = stream.T + # if T > 370: return 0 # Prevents multiple steady states + kf = 2.59e4 * exp(-5.340e4 / (R * T)) + kr = 3.80e3 * exp(-5.224e4 / (R * T)) + H2O, LA, BuLA, BuOH = stream.mol / stream.F_mol + return 3600 * (kf * LA * BuOH - kr * BuLA * H2O) # kmol / kg-catalyst / hr + + stream = bst.Stream( + H2O=10, Butanol=10, LacticAcid=2, T=355, + ) + stream.vle(V=0, P=101325) + stage_reactions = { + i: Esterification('LacticAcid + Butanol -> Water + ButylLactate', reactant='LacticAcid') + for i in range(2) + } + distillation = bst.MESHDistillation( + N_stages=5, + ins=[stream], + feed_stages=[2], + outs=['distillate', 'bottoms_product'], + full_condenser=False, + reflux=1.0, + boilup=2.0, + use_cache=True, + LHK=('Butanol', 'ButylLactate'), + stage_reactions=stage_reactions, + method='fixed-point', + maxiter=100, + ) + distillation.simulate() + flows = [ + [6.585111268569887e-06, 3.6465771244802687e-09, + 3.110437134095077, 8.015523262914513], + [0.019007540635984595, 1.9809858706061696, + 6.908576991652181, 1.9654626113382356], ] for i, j in zip(distillation.outs, flows): assert_allclose(i.mol, j, rtol=1e-5, atol=1e-3) @@ -211,7 +360,7 @@ def test_distillation(): if __name__ == '__main__': test_multi_stage_adiabatic_vle() test_distillation() - test_reactive_distillation() + test_lactic_acid_ethanol_reactive_distillation() diff --git a/thermosteam b/thermosteam index 800b77fb..b6e4e292 160000 --- a/thermosteam +++ b/thermosteam @@ -1 +1 @@ -Subproject commit 800b77fb823198274f179b95deec9bc11683b915 +Subproject commit b6e4e292568787cf3cb41f3e0c2290592cb2336b