forked from PaddlePaddle/Paddle3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmoke_hrnet18_no_dcn_kitti.yml
66 lines (59 loc) · 1.41 KB
/
smoke_hrnet18_no_dcn_kitti.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
_base_: '../_base_/kitti_mono.yml'
batch_size: 8
iters: 70000
train_dataset:
transforms:
- type: LoadImage
reader: pillow
to_chw: False
- type: Gt2SmokeTarget
mode: train
num_classes: 3
input_size: [1280, 384]
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
val_dataset:
transforms:
- type: LoadImage
reader: pillow
to_chw: False
- type: Gt2SmokeTarget
mode: val
num_classes: 3
input_size: [1280, 384]
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
optimizer:
type: Adam
lr_scheduler:
type: MultiStepDecay
milestones: [36000, 55000]
learning_rate: 1.25e-4
model:
type: SMOKE
backbone:
type: $paddleseg.HRNet_W18
pretrained: https://bj.bcebos.com/paddleseg/dygraph/hrnet_w18_ssld.tar.gz
head:
type: SMOKEPredictor
num_classes: 3
reg_channels: [1, 2, 3, 2, 2]
num_chanels: 256
norm_type: "gn"
in_channels: 270
depth_ref: [28.01, 16.32]
# dim_ref is the reference size mentioned in the paper, the order here is [l, h, w]
dim_ref: [[3.88, 1.63, 1.53], [1.78, 1.70, 0.58], [0.88, 1.73, 0.67]]
max_detection: 50
pred_2d: True
export:
transforms:
- type: LoadImage
reader: pillow
to_chw: False
to_rgb: True
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]