- Rich Model for Steganalysis of Color Images
- The ALASKA Steganalysis Challenge: A First Step Towards Steganalysis ”Into The Wild”
- Rich Models for Steganalysis of Digital Images
- Pixels-off: Data-augmentation Complementary Solution for Deep-learning Steganalysis
- https://www.kaggle.com/remicogranne/jpeg-explanations
- https://github.com/digantamisra98/EvoNorm/blob/master/evonorm2d.py
- https://github.com/Steganalysis-CNN/residual-steganalysis/blob/master/init/res_finetune_test.m
- https://github.com/yedmed/steganalysis_with_CNN_Yedroudj-Net/blob/master/pytorch_version/Covariance_Pooling_Steganalytic_Network_cat.py
https://github.com/facebookresearch/detr/tree/master/models https://www.youtube.com/watch?v=v8U9mM1Vwv0 https://github.com/mahyarnajibi/FreeAdversarialTraining/blob/master/configs.yml https://github.com/TAMU-VITA/Adv-SS-Pretraining/tree/master/pretraining
Experiment Name | Model | Fold | bAUC | cAUC | Acc01 | LB | LB (Flip) | LB (D4) |
---|---|---|---|---|---|---|---|---|
May07_16_48_rgb_resnet34_fold0 | rgb_resnet34 | 0 | 8449 | 56.97 | ||||
May07_16_48_rgb_resnet34_fold0 (fine-tune) | rgb_resnet34 | 0 | 8451 | 56.90 | ||||
May08_22_42_rgb_resnet34_fold1 | rgb_resnet34 | 1 | 8439 | 56.62 | ||||
May09_15_13_rgb_densenet121_fold0_fp16 | rgb_densenet121 | 0 | 8658 | 8660 | 60.90 | |||
May11_08_49_rgb_densenet201_fold3_fp16 | rgb_densenet201 | 3 | 8402 | 8405 | 56.38 | |||
---------------------------------------------- | ------------------------ | ------ | ------ | ------ | ------- | ----- | ----------- | --------- |
May13_23_00_rgb_skresnext50_32x4d_fold0_fp16 | rgb_skresnext50_32x4d | 0 | 9032 | 9032 | 67.22 | |||
May13_19_06_rgb_skresnext50_32x4d_fold1_fp16 | rgb_skresnext50_32x4d | 1 | 9055 | 9055 | 67.60 | |||
May12_13_01_rgb_skresnext50_32x4d_fold2_fp16 | rgb_skresnext50_32x4d | 2 | 9049 | 9048 | 67.56 | |||
May11_09_46_rgb_skresnext50_32x4d_fold3_fp16 | rgb_skresnext50_32x4d | 3 | 8700 | 8699 | 61.45 | |||
---------------------------------------------- | ------------------------ | ------ | ------ | ------ | ------- | ------- | ------- | ------- |
May15_17_03_ela_skresnext50_32x4d_fold1_fp16 | ela_skresnext50_32x4d | 1 | 9144 | 9144 | 69.55 | 0.915 | 0.919 | 0.919 |
May21_13_28_ela_skresnext50_32x4d_fold2_fp16 | ela_skresnext50_32x4d | 2 | 9164 | 9163 | 70.17 | 0.921 | 0.921 | |
May24_11_08_ela_skresnext50_32x4d_fold0_fp16 | ela_skresnext50_32x4d | 0 | ||||||
May26_12_58_ela_skresnext50_32x4d_fold3_fp16 | ela_skresnext50_32x4d | 3 | 0.922 | |||||
------------------------------------------------ | ------------------------- | ------ | ------ | ------ | ------- | ------- | ------- | ------- |
May18_20_10_ycrcb_skresnext50_32x4d_fold0_fp16 | ycrcb_skresnext50_32x4d | 0 | 8266 | 8271 | 55.34 | |||
------------------------------------------------ | ------------------------- | ------ | ------ | ------ | ------- | ------- | ------- | ------- |
May28_13_04_rgb_tf_efficientnet_b6_ns_fold0 | rgb_tf_efficientnet_b6 | 0 | 0.917 | |||||
May28_18_49_rgb_tf_efficientnet_b6_ns_fold1 | rgb_tf_efficientnet_b6 | 1 | 0.923 |
|----------------------------------------------|-----------------------------|------|--------|--------|--------|-------|-------|-----------|---------|
Experiment Name | Model | Fold | Metric | bAUC | cAUC | Acc01 | LB | LB (Flip) | LB (D4) |
---|---|---|---|---|---|---|---|---|---|
Jun05_08_49_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 0 | loss | 0.9199 | 0.9200 | 71.36 | |||
Jun05_08_49_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 0 | b-auc | 0.9205 | 0.9205 | 70.93 | |||
Jun05_08_49_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 0 | c-auc | 0.9205 | 0.9205 | 70.93 | |||
---------------------------------------------- | ----------------------------- | ------ | -------- | -------- | -------- | ------- | ------- | ----------- | --------- |
Jun09_16_38_rgb_tf_efficientnet_b6_ns * | rgb_tf_efficientnet_b6_ns | 1 | loss | 0.9237 | 0.9238 | 72.29 | |||
Jun09_16_38_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 1 | b-auc | 0.9237 | 0.9238 | 72.29 | |||
Jun09_16_38_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 1 | c-auc | 0.9237 | 0.9238 | 72.29 | |||
---------------------------------------------- | ----------------------------- | ------ | -------- | -------- | -------- | ------- | ------- | ----------- | --------- |
Jun11_08_51_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 2 | loss | ||||||
Jun11_08_51_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 2 | b-auc | ||||||
Jun11_08_51_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 2 | c-auc | ||||||
---------------------------------------------- | ----------------------------- | ------ | -------- | -------- | -------- | ------- | ------- | ----------- | --------- |
Jun10_08_49_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 3 | loss | ||||||
Jun10_08_49_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 3 | b-auc | ||||||
Jun10_08_49_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 3 | c-auc | ||||||
---------------------------------------------- | ----------------------------- | ------ | -------- | -------- | -------- | ------- | ------- | ----------- | --------- |
Jun18_19_24_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 0 | loss | 0.9264 | 0.9254 | 72.33 | |||
Jun18_19_24_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 0 | b-auc | 0.9265 | 0.9253 | 72.08 | 0.926 / 0.924 | ||
Jun18_19_24_rgb_tf_efficientnet_b6_ns | rgb_tf_efficientnet_b6_ns | 0 | c-auc | 0.9264 | 0.9254 | 72.33 | 0.923 / 0.922 | ||
---------------------------------------------- | ----------------------------- | ------ | -------- | -------- | -------- | ------- | ------- | ----------- | --------- |
Average of 4 folds (best loss): Average of 4 folds (best auc b): Average of 4 folds (best auc c): Average of 4 folds (average of all 3):
https://github.com/YangzlTHU/IStego100K https://arxiv.org/pdf/1911.05542.pdf