-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmake_folds.py
39 lines (27 loc) · 1.07 KB
/
make_folds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import argparse
import os
from collections import defaultdict
import pandas as pd
import numpy as np
from pytorch_toolbelt.utils import fs
from alaska2 import INPUT_IMAGE_ID_KEY, INPUT_FOLD_KEY
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-dd", "--data-dir", type=str, default=os.environ.get("KAGGLE_2020_ALASKA2"))
args = parser.parse_args()
data_dir = args.data_dir
original_images = np.array(fs.find_images_in_dir(os.path.join(data_dir, "Cover")))
image_sizes = np.array([os.stat(fname).st_size for fname in original_images])
order = np.argsort(image_sizes)
original_images = original_images[order]
num_folds = 4
num_images = len(original_images)
folds_lut = (list(range(num_folds)) * num_images)[:num_images]
folds_lut = np.array(folds_lut)
df = defaultdict(list)
df[INPUT_IMAGE_ID_KEY].extend([os.path.basename(x) for x in original_images])
df[INPUT_FOLD_KEY].extend(folds_lut)
df = pd.DataFrame.from_dict(df)
df.to_csv("folds.csv", index=False)
if __name__ == "__main__":
main()