-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain2.py
354 lines (302 loc) · 13.6 KB
/
train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from __future__ import absolute_import
import argparse
import collections
import gc
import itertools
import json
import os
from datetime import datetime
import numpy as np
from catalyst.dl import SupervisedRunner, OptimizerCallback, SchedulerCallback
from catalyst.utils import load_checkpoint, unpack_checkpoint
from pytorch_toolbelt.optimization.functional import get_optimizable_parameters
from pytorch_toolbelt.utils import fs, torch_utils
from pytorch_toolbelt.utils.catalyst import (
ShowPolarBatchesCallback,
report_checkpoint,
clean_checkpoint,
HyperParametersCallback,
)
from pytorch_toolbelt.utils.random import set_manual_seed
from pytorch_toolbelt.utils.torch_utils import count_parameters, transfer_weights
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
from alaska2 import *
def paired_collate(input):
input = default_collate(input)
input[INPUT_IMAGE_ID_KEY] = list(itertools.chain(*zip(*input[INPUT_IMAGE_ID_KEY])))
input[INPUT_IMAGE_ID_KEY] = np.array(input[INPUT_IMAGE_ID_KEY])
input[INPUT_IMAGE_ID_KEY] = np.concatenate(
[input[INPUT_IMAGE_ID_KEY][0::2], input[INPUT_IMAGE_ID_KEY][1::2]]
).tolist()
for feature_key in [
INPUT_TRUE_MODIFICATION_FLAG,
INPUT_TRUE_MODIFICATION_TYPE,
INPUT_IMAGE_KEY,
INPUT_IMAGE_QF_KEY,
INPUT_FEATURES_DCT_KEY,
INPUT_FEATURES_ELA_KEY,
INPUT_FEATURES_ELA_RICH_KEY,
INPUT_FEATURES_JPEG_FLOAT,
]:
if feature_key in input:
input[feature_key] = torch.cat([input[feature_key][:, 0, ...], input[feature_key][:, 1, ...]], dim=0)
input[INPUT_TRUE_MODIFICATION_FLAG] = input[INPUT_TRUE_MODIFICATION_FLAG].unsqueeze(-1)
return input
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-acc", "--accumulation-steps", type=int, default=1, help="Number of batches to process")
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--obliterate", type=float, default=0, help="Change of obliteration")
parser.add_argument("-nid", "--negative-image-dir", type=str, default=None, help="Change of obliteration")
parser.add_argument("-v", "--verbose", action="store_true")
parser.add_argument("--fast", action="store_true")
parser.add_argument("--cache", action="store_true")
parser.add_argument("--bitmix", action="store_true")
parser.add_argument("-dd", "--data-dir", type=str, default=os.environ.get("KAGGLE_2020_ALASKA2"))
parser.add_argument("-m", "--model", type=str, default="resnet34", help="")
parser.add_argument("-b", "--batch-size", type=int, default=16, help="Batch Size during training, e.g. -b 64")
parser.add_argument("-e", "--epochs", type=int, default=100, help="Epoch to run")
parser.add_argument(
"-es", "--early-stopping", type=int, default=None, help="Maximum number of epochs without improvement"
)
parser.add_argument("-fe", "--freeze-encoder", type=int, default=0, help="Freeze encoder parameters for N epochs")
parser.add_argument("-lr", "--learning-rate", type=float, default=1e-3, help="Initial learning rate")
parser.add_argument(
"-l", "--modification-flag-loss", type=str, default=None, action="append", nargs="+" # [["ce", 1.0]],
)
parser.add_argument(
"--modification-type-loss", type=str, default=None, action="append", nargs="+" # [["ce", 1.0]],
)
parser.add_argument("--embedding-loss", type=str, default=None, action="append", nargs="+") # [["ce", 1.0]],
parser.add_argument("--feature-maps-loss", type=str, default=None, action="append", nargs="+") # [["ce", 1.0]],
parser.add_argument("--mask-loss", type=str, default=None, action="append", nargs="+") # [["ce", 1.0]],
parser.add_argument("-o", "--optimizer", default="RAdam", help="Name of the optimizer")
parser.add_argument(
"-c", "--checkpoint", type=str, default=None, help="Checkpoint filename to use as initial model weights"
)
parser.add_argument("-w", "--workers", default=8, type=int, help="Num workers")
parser.add_argument("-a", "--augmentations", default="safe", type=str, help="Level of image augmentations")
parser.add_argument("--transfer", default=None, type=str, help="")
parser.add_argument("--fp16", action="store_true")
parser.add_argument("--mixup", action="store_true")
parser.add_argument("--cutmix", action="store_true")
parser.add_argument("--tsa", action="store_true")
parser.add_argument("--fold", default=None, type=int)
parser.add_argument("-s", "--scheduler", default=None, type=str, help="")
parser.add_argument("-x", "--experiment", default=None, type=str, help="")
parser.add_argument("-d", "--dropout", default=None, type=float, help="Dropout before head layer")
parser.add_argument(
"--warmup", default=0, type=int, help="Number of warmup epochs with reduced LR on encoder parameters"
)
parser.add_argument(
"--fine-tune", default=0, type=int, help="Number of warmup epochs with reduced LR on encoder parameters"
)
parser.add_argument("-wd", "--weight-decay", default=0, type=float, help="L2 weight decay")
parser.add_argument("--show", action="store_true")
parser.add_argument("--balance", action="store_true")
parser.add_argument("--freeze-bn", action="store_true")
args = parser.parse_args()
set_manual_seed(args.seed)
assert (
args.modification_flag_loss or args.modification_type_loss or args.embedding_loss
), "At least one of losses must be set"
modification_flag_loss = args.modification_flag_loss
modification_type_loss = args.modification_type_loss
embedding_loss = args.embedding_loss
feature_maps_loss = args.feature_maps_loss
mask_loss = args.mask_loss
data_dir = args.data_dir
bitmix = args.bitmix
cache = args.cache
num_workers = args.workers
num_epochs = args.epochs
learning_rate = args.learning_rate
model_name: str = args.model
optimizer_name = args.optimizer
image_size = (512, 512)
fast = args.fast
augmentations = args.augmentations
fp16 = args.fp16
scheduler_name = args.scheduler
experiment = args.experiment
dropout = args.dropout
verbose = args.verbose
show = args.show
accumulation_steps = args.accumulation_steps
weight_decay = args.weight_decay
fold = args.fold
balance = args.balance
freeze_bn = args.freeze_bn
train_batch_size = args.batch_size
mixup = args.mixup
cutmix = args.cutmix
tsa = args.tsa
negative_image_dir = args.negative_image_dir
# Compute batch size for validation
valid_batch_size = train_batch_size
run_train = num_epochs > 0
custom_model_kwargs = {}
if dropout is not None:
custom_model_kwargs["dropout"] = float(dropout)
if embedding_loss is not None:
custom_model_kwargs["need_embedding"] = True
model: nn.Module = get_model(model_name, **custom_model_kwargs).cuda()
required_features = model.required_features
if mask_loss is not None:
required_features.append(INPUT_TRUE_MODIFICATION_MASK)
if args.transfer:
transfer_checkpoint = fs.auto_file(args.transfer)
print("Transferring weights from model checkpoint", transfer_checkpoint)
checkpoint = load_checkpoint(transfer_checkpoint)
pretrained_dict = checkpoint["model_state_dict"]
transfer_weights(model, pretrained_dict)
if args.checkpoint:
checkpoint = load_checkpoint(fs.auto_file(args.checkpoint))
unpack_checkpoint(checkpoint, model=model)
print("Loaded model weights from:", args.checkpoint)
report_checkpoint(checkpoint)
if freeze_bn:
from pytorch_toolbelt.optimization.functional import freeze_model
freeze_model(model, freeze_bn=True)
print("Freezing bn params")
main_metric = "loss"
main_metric_minimize = True
current_time = datetime.now().strftime("%b%d_%H_%M")
checkpoint_prefix = f"{current_time}_{args.model}_fold{fold}_paired"
if fp16:
checkpoint_prefix += "_fp16"
if fast:
checkpoint_prefix += "_fast"
if mixup:
checkpoint_prefix += "_mixup"
if cutmix:
checkpoint_prefix += "_cutmix"
if experiment is not None:
checkpoint_prefix = experiment
log_dir = os.path.join("runs", checkpoint_prefix)
os.makedirs(log_dir, exist_ok=False)
config_fname = os.path.join(log_dir, f"{checkpoint_prefix}.json")
with open(config_fname, "w") as f:
train_session_args = vars(args)
f.write(json.dumps(train_session_args, indent=2))
default_callbacks = []
if show:
default_callbacks += [ShowPolarBatchesCallback(draw_predictions, metric="loss", minimize=True)]
if run_train:
train_ds, valid_ds, train_sampler = get_datasets_paired(
data_dir=data_dir,
bitmix=bitmix,
augmentation=augmentations,
fast=fast,
fold=fold,
features=required_features,
)
criterions_dict, loss_callbacks = get_criterions(
modification_flag=modification_flag_loss,
modification_type=modification_type_loss,
embedding_loss=embedding_loss,
feature_maps_loss=feature_maps_loss,
mask_loss=mask_loss,
num_epochs=num_epochs,
mixup=mixup,
cutmix=cutmix,
tsa=tsa,
)
callbacks = (
default_callbacks
+ loss_callbacks
+ [
OptimizerCallback(accumulation_steps=accumulation_steps, decouple_weight_decay=False),
HyperParametersCallback(
hparam_dict={
"model": model_name,
"scheduler": scheduler_name,
"optimizer": optimizer_name,
"augmentations": augmentations,
"size": image_size[0],
"weight_decay": weight_decay,
}
),
]
)
loaders = collections.OrderedDict()
loaders["train"] = DataLoader(
train_ds,
batch_size=train_batch_size // 2,
num_workers=num_workers,
pin_memory=True,
drop_last=True,
shuffle=train_sampler is None,
sampler=train_sampler,
collate_fn=paired_collate,
)
loaders["valid"] = DataLoader(valid_ds, batch_size=valid_batch_size, num_workers=num_workers, pin_memory=True)
print("Train session :", checkpoint_prefix)
print(" FP16 mode :", fp16)
print(" Fast mode :", args.fast)
print(" Epochs :", num_epochs)
print(" Workers :", num_workers)
print(" Data dir :", data_dir)
print(" Log dir :", log_dir)
print(" Cache :", cache)
print("Data ")
print(" Augmentations :", augmentations)
print(" Negative images:", negative_image_dir)
print(" Train size :", len(loaders["train"]), "batches", len(train_ds), "samples")
print(" Valid size :", len(loaders["valid"]), "batches", len(valid_ds), "samples")
print(" Image size :", image_size)
print(" Balance :", balance)
print(" Mixup :", mixup)
print(" BitMix :", bitmix)
print(" CutMix :", cutmix)
print(" TSA :", tsa)
print("Model :", model_name)
print(" Parameters :", count_parameters(model))
print(" Dropout :", dropout)
print("Optimizer :", optimizer_name)
print(" Learning rate :", learning_rate)
print(" Weight decay :", weight_decay)
print(" Scheduler :", scheduler_name)
print(" Batch sizes :", train_batch_size, valid_batch_size)
print("Losses ")
print(" Flag :", modification_flag_loss)
print(" Type :", modification_type_loss)
print(" Embedding :", embedding_loss)
print(" Feature maps :", feature_maps_loss)
optimizer = get_optimizer(
optimizer_name, get_optimizable_parameters(model), learning_rate=learning_rate, weight_decay=weight_decay
)
scheduler = get_scheduler(
scheduler_name, optimizer, lr=learning_rate, num_epochs=num_epochs, batches_in_epoch=len(loaders["train"])
)
if isinstance(scheduler, CyclicLR):
callbacks += [SchedulerCallback(mode="batch")]
# model training
runner = SupervisedRunner(input_key=required_features, output_key=None)
runner.train(
fp16=fp16,
model=model,
criterion=criterions_dict,
optimizer=optimizer,
scheduler=scheduler,
callbacks=callbacks,
loaders=loaders,
logdir=os.path.join(log_dir, "main"),
num_epochs=num_epochs,
verbose=verbose,
main_metric=main_metric,
minimize_metric=main_metric_minimize,
checkpoint_data={"cmd_args": vars(args)},
)
del optimizer, loaders, runner, callbacks
best_checkpoint = os.path.join(log_dir, "main", "checkpoints", "best.pth")
model_checkpoint = os.path.join(log_dir, f"{checkpoint_prefix}.pth")
# Restore state of best model
clean_checkpoint(best_checkpoint, model_checkpoint)
# unpack_checkpoint(load_checkpoint(model_checkpoint), model=model)
torch.cuda.empty_cache()
gc.collect()
if __name__ == "__main__":
main()