-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_tpu.py
219 lines (171 loc) · 7 KB
/
train_tpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import pickle
import torch_xla
import torch_xla.debug.metrics as met
import torch_xla.distributed.data_parallel as dp
import torch_xla.distributed.parallel_loader as pl
import torch_xla.utils.utils as xu
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
import torch_xla.test.test_utils as test_utils
import warnings
from torch.optim.lr_scheduler import ReduceLROnPlateau
# warnings.filterwarnings("ignore")
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from catalyst.utils import any2device
from pytorch_toolbelt.optimization.functional import get_optimizable_parameters
from pytorch_toolbelt.utils import to_numpy
from torch.utils.data import DataLoader, Dataset
import time
from alaska2 import *
from alaska2.submissions import parse_classifier_probas
def xla_all_gather(data, device):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
import torch_xla.core.xla_model
world_size = xm.xrt_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to(device)
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device=device)
size_list = [torch.tensor([0], device=device) for _ in range(world_size)]
xla_model.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device)
tensor = torch.cat((tensor, padding), dim=0)
xla_model.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def _run(
model: nn.Module,
prefix: str,
data_dir: str,
fold: int,
epochs: int,
batch_size: int,
optimizer_name: str,
augmentations="light",
learning_rate=1e-4,
weight_decay=0,
fast=False,
):
def train_fn(epoch, train_dataloader, optimizer, criterion, scheduler, device):
model.train()
for batch_idx, batch_data in enumerate(train_dataloader):
optimizer.zero_grad()
batch_data = any2device(batch_data, device)
outputs = model(**batch_data)
y_pred = outputs[OUTPUT_PRED_MODIFICATION_TYPE]
y_true = batch_data[INPUT_TRUE_MODIFICATION_TYPE]
loss = criterion(y_pred, y_true)
if batch_idx % 100:
xm.master_print(f"Batch: {batch_idx}, loss: {loss.item()}")
loss.backward()
xm.optimizer_step(optimizer)
if scheduler is not None:
scheduler.step()
def valid_fn(epoch, valid_dataloader, criterion, device):
model.eval()
pred_scores = []
true_scores = []
for batch_idx, batch_data in enumerate(valid_dataloader):
batch_data = any2device(batch_data, device)
outputs = model(**batch_data)
y_pred = outputs[OUTPUT_PRED_MODIFICATION_TYPE]
y_true = batch_data[INPUT_TRUE_MODIFICATION_TYPE]
loss = criterion(y_pred, y_true)
pred_scores.extend(to_numpy(parse_classifier_probas(y_pred)))
true_scores.extend(to_numpy(y_true))
xm.master_print(f"Batch: {batch_idx}, loss: {loss.item()}")
val_wauc = alaska_weighted_auc(xla_all_gather(true_scores, device), xla_all_gather(pred_scores, device))
xm.master_print(f"Valid epoch: {epoch}, wAUC: {val_wauc}")
return val_wauc
train_dataset, valid_dataset, _ = get_datasets(
data_dir, fold=fold, fast=fast, augmentation=augmentations, features=model.required_features
)
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal(), shuffle=True
)
valid_sampler = torch.utils.data.distributed.DistributedSampler(
valid_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal(), shuffle=False
)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler, num_workers=1)
valid_dataloader = DataLoader(
valid_dataset, batch_size=batch_size, sampler=valid_sampler, num_workers=1, drop_last=False
)
device = xm.xla_device()
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = get_optimizer(
optimizer_name, get_optimizable_parameters(model), learning_rate=learning_rate, weight_decay=weight_decay
)
num_train_steps = int(len(train_dataset) / batch_size / xm.xrt_world_size() * epochs)
xm.master_print(f"num_train_steps = {num_train_steps}, world_size={xm.xrt_world_size()}")
lr_scheduler = ReduceLROnPlateau(optimizer, mode="max", factor=0.5, patience=5, verbose=True, min_lr=1e-6)
best_wauc = 0
train_begin = time.time()
for epoch in range(epochs):
para_loader = pl.ParallelLoader(train_dataloader, [device])
start = time.time()
print("*" * 15)
print(f"EPOCH: {epoch + 1}")
print("*" * 15)
print("Training.....")
train_fn(
epoch=epoch + 1,
train_dataloader=para_loader.per_device_loader(device),
optimizer=optimizer,
criterion=criterion,
scheduler=None,
device=device,
)
with torch.no_grad():
para_loader = pl.ParallelLoader(valid_dataloader, [device])
print("Validating....")
val_wauc = valid_fn(
epoch=epoch + 1,
valid_dataloader=para_loader.per_device_loader(device),
criterion=criterion,
device=device,
)
if isinstance(lr_scheduler, ReduceLROnPlateau):
lr_scheduler.step(val_wauc)
xm.save(model.state_dict(), f"{prefix}_last.pth")
if val_wauc > best_wauc:
best_wauc = val_wauc
xm.save(model.state_dict(), f"{prefix}_best.pth")
xm.master_print(f"Saved best checkpoint with wAUC {best_wauc}")
print(f"Epoch completed in {(time.time() - start) / 60} minutes")
print(f"Training completed in {(time.time() - train_begin) / 60} minutes")
_run(
model=get_model("rgb_tf_efficientnet_b6_ns", 4, dropout=0.1),
prefix="",
data_dir=DATA_DIR,
fold=0,
epochs=50,
batch_size=16,
optimizer_name="Ranger",
fast=True,
)