forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTests.qs
295 lines (237 loc) · 11.8 KB
/
Tests.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains testing harness for all tasks.
// You should not modify anything in this file.
// The tasks themselves can be found in Tasks.qs file.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.Teleportation {
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Diagnostics;
// ------------------------------------------------------
@Test("QuantumSimulator")
operation T11_Entangle () : Unit {
use (q0, q1) = (Qubit(), Qubit());
// Apply operation that needs to be tested
Entangle(q0, q1);
// Apply adjoint reference operation and check that the result is |00⟩
Adjoint Entangle_Reference(q0, q1);
// Assert that all qubits end up in |0⟩ state
AssertAllZero([q0, q1]);
}
// ------------------------------------------------------
// Helper which prepares proper Bell state on two qubits
// 0 - |Φ⁺⟩ = (|00⟩ + |11⟩) / sqrt(2)
// 1 - |Φ⁻⟩ = (|00⟩ - |11⟩) / sqrt(2)
// 2 - |Ψ⁺⟩ = (|01⟩ + |10⟩) / sqrt(2)
// 3 - |Ψ⁻⟩ = (|01⟩ - |10⟩) / sqrt(2)
operation StatePrep_BellState (q1 : Qubit, q2 : Qubit, state : Int) : Unit {
H(q1);
CNOT(q1, q2);
// now we have |00⟩ + |11⟩ - modify it based on state arg
if (state % 2 == 1) {
// negative phase
Z(q2);
}
if (state / 2 == 1) {
X(q2);
}
}
// ------------------------------------------------------
// Helper operation that runs teleportation using two building blocks
// specified as first two parameters.
operation ComposeTeleportation (
bellPrepOp : ((Qubit, Qubit) => Unit),
getDescriptionOp : ((Qubit, Qubit) => (Bool, Bool)),
reconstructOp : ((Qubit, (Bool, Bool)) => Unit),
qAlice : Qubit,
qBob : Qubit,
qMessage : Qubit) : Unit {
bellPrepOp(qAlice, qBob);
let classicalBits = getDescriptionOp(qAlice, qMessage);
// Alice sends the classical bits to Bob.
// Bob uses these bits to transform his part of the entangled pair into the message.
reconstructOp(qBob, classicalBits);
}
// ------------------------------------------------------
// Helper operation that runs a teleportation operation (specified by teleportOp).
// The state to teleport is set up using an operation (specified by setupPsiOp).
//
// Specifying the state to teleport through an operation allows to get the inverse
// which makes testing easier.
operation TeleportTestHelper (
teleportOp : ((Qubit, Qubit, Qubit) => Unit),
setupPsiOp : (Qubit => Unit is Adj)) : Unit {
use (qMessage, qAlice, qBob) = (Qubit(), Qubit(), Qubit());
setupPsiOp(qMessage);
// This should modify qBob to be identical to the state
// of qMessage before the function call.
teleportOp(qAlice, qBob, qMessage);
// Applying the inverse of the setup operation to qBob
// should make it Zero.
Adjoint setupPsiOp(qBob);
AssertQubit(Zero, qBob);
ResetAll([qMessage, qAlice, qBob]);
}
// ------------------------------------------------------
// Run teleportation for a number of different states.
// After each teleportation success is asserted.
// Also repeats for each state several times as
// code is expected to take different paths each time because
// measurements done by Alice are not deterministic.
operation TeleportTestLoop (teleportOp : ((Qubit, Qubit, Qubit) => Unit)) : Unit {
// Define setup operations for the message qubit
// on which to test teleportation: |0⟩, |1⟩, |0⟩ + |1⟩, unequal superposition.
let setupPsiOps = [I, X, H, Ry(42.0, _)];
// As part of teleportation Alice runs some measurements
// with nondeterministic outcome.
// Depending on the outcomes different paths are taken on Bob's side.
// We repeat each test run several times to ensure that all paths are checked.
let numRepetitions = 100;
for psiOp in setupPsiOps {
for j in 1 .. numRepetitions {
TeleportTestHelper(teleportOp, psiOp);
}
}
}
// Test the 'SendMessage' operation by using it as one part of full teleportation,
// taking reference implementation for the other parts.
@Test("QuantumSimulator")
operation T12_SendMessage () : Unit {
let teleport = ComposeTeleportation(StatePrep_BellState(_, _, 0), SendMessage, ReconstructMessage_Reference, _, _, _);
TeleportTestLoop(teleport);
}
// Test the 'ReconstructMessage' operation by using it as one part of full teleportation,
// taking reference implementation for the other parts.
@Test("QuantumSimulator")
operation T13_ReconstructMessage () : Unit {
let teleport = ComposeTeleportation(StatePrep_BellState(_, _, 0), SendMessage_Reference, ReconstructMessage, _, _, _);
TeleportTestLoop(teleport);
}
// Test the full Teleport operation
@Test("QuantumSimulator")
operation T14_StandardTeleport () : Unit {
TeleportTestLoop(StandardTeleport);
}
// ------------------------------------------------------
// Runs teleportation for each state that is to be prepared and
// sent by Alice. Success is asserted after each teleportation.
// Also repeats for each state several times; this is because
// code is expected to take different paths each time since
// measurements done by Alice are not deterministic.
operation TeleportPreparedStateTestLoop (prepareAndSendMessageOp : ((Qubit, Pauli, Bool) => (Bool, Bool)), reconstructAndMeasureMessageOp : ((Qubit, (Bool, Bool), Pauli) => Bool)) : Unit {
let messages = [(PauliX, false),
(PauliX, true),
(PauliY, false),
(PauliY, true),
(PauliZ, false),
(PauliZ, true)];
let numRepetitions = 100;
use (qAlice, qBob) = (Qubit(), Qubit());
for (basis, sentState) in messages {
for j in 1 .. numRepetitions {
StatePrep_BellState(qAlice, qBob, 0);
let classicalBits = prepareAndSendMessageOp(qAlice, basis, sentState);
let receivedState = reconstructAndMeasureMessageOp(qBob, classicalBits, basis);
EqualityFactB(receivedState, sentState, $"Sent and received states were not equal for {sentState} eigenstate in {basis} basis.");
ResetAll([qAlice, qBob]);
}
}
}
// Test the 'PrepareAndSendMessage' operation by using it as one part of full teleportation,
// taking reference implementation for the other parts.
@Test("QuantumSimulator")
operation T15_PrepareAndSendMessage () : Unit {
TeleportPreparedStateTestLoop(PrepareAndSendMessage, ReconstructAndMeasureMessage_Reference);
}
// Test the 'ReconstructAndMeasureMessage' operation by using it as one part of full teleportation,
// taking reference implementation for the other parts.
@Test("QuantumSimulator")
operation T16_ReconstructAndMeasureMessage () : Unit {
TeleportPreparedStateTestLoop(PrepareAndSendMessage_Reference, ReconstructAndMeasureMessage);
}
@Test("QuantumSimulator")
operation T18_EntanglementSwapping () : Unit {
for i in 1 .. 15 {
use (qAlice1, qAlice2) = (Qubit(), Qubit());
Entangle_Reference(qAlice1, qAlice2);
use (qBob1, qBob2) = (Qubit(), Qubit());
Entangle_Reference(qBob1, qBob2);
let (teleportOp, adjustOp) = EntanglementSwapping();
// Apply the operations returned by the solution:
// first Charlie's side, then Bob's side.
let result = teleportOp(qAlice1, qBob1);
adjustOp(qBob2, result);
// Apply adjoint of the operation that prepares the |Φ⁺⟩ state:
// if the state of Alice's and Bob's qubits was |Φ⁺⟩,
// their state should become |00⟩ now.
Adjoint Entangle_Reference(qAlice2, qBob2);
// Assert that Alice's and Bob's qubits end up in |0⟩ state.
AssertAllZero([qAlice2, qBob2]);
}
}
// ------------------------------------------------------
// Test variations of the teleport protocol using different state prep procedures
@Test("QuantumSimulator")
operation T21_ReconstructMessage_PhiMinus () : Unit {
let teleport = ComposeTeleportation(StatePrep_BellState(_, _, 1), SendMessage_Reference, ReconstructMessage_PhiMinus, _, _, _);
TeleportTestLoop(teleport);
}
@Test("QuantumSimulator")
operation T22_ReconstructMessage_PsiPlus () : Unit {
let teleport = ComposeTeleportation(StatePrep_BellState(_, _, 2), SendMessage_Reference, ReconstructMessage_PsiPlus, _, _, _);
TeleportTestLoop(teleport);
}
@Test("QuantumSimulator")
operation T23_ReconstructMessage_PsiMinus () : Unit {
let teleport = ComposeTeleportation(StatePrep_BellState(_, _, 3), SendMessage_Reference, ReconstructMessage_PsiMinus, _, _, _);
TeleportTestLoop(teleport);
}
// ------------------------------------------------------
@Test("QuantumSimulator")
operation T31_MeasurementFreeTeleport () : Unit {
let setupPsiOps = [I, X, H, Ry(42.0, _)];
let numRepetitions = 100;
use (qMessage, qAlice, qBob) = (Qubit(), Qubit(), Qubit());
for psiOp in setupPsiOps {
for j in 1 .. numRepetitions {
psiOp(qMessage);
StatePrep_BellState(qAlice, qBob, 0);
MeasurementFreeTeleport(qAlice, qBob, qMessage);
Adjoint psiOp(qBob);
AssertQubit(Zero, qBob);
ResetAll([qMessage, qAlice, qBob]);
}
}
}
// ------------------------------------------------------
@Test("QuantumSimulator")
operation T41_EntangleThreeQubits () : Unit {
use (qAlice, qBob, qCharlie) = (Qubit(), Qubit(), Qubit());
// Apply operation that needs to be tested
EntangleThreeQubits(qAlice, qBob, qCharlie);
// Apply adjoint reference operation and check that the result is |000⟩
Adjoint EntangleThreeQubits_Reference(qAlice, qBob, qCharlie);
// Assert that all qubits end up in |0⟩ state
AssertAllZero([qAlice, qBob, qCharlie]);
}
@Test("QuantumSimulator")
operation T42_ReconstructMessageWhenThreeEntangledQubits () : Unit {
let setupPsiOps = [I, X, H, Ry(42.0, _)];
let numRepetitions = 100;
use (qMessage, qAlice, qBob, qCharlie) = (Qubit(), Qubit(), Qubit(), Qubit());
for psiOp in setupPsiOps {
for j in 1 .. numRepetitions {
psiOp(qMessage);
EntangleThreeQubits_Reference(qAlice, qBob, qCharlie);
let (b1, b2) = SendMessage_Reference(qAlice, qMessage);
let b3 = ResultAsBool(M(qBob));
ReconstructMessageWhenThreeEntangledQubits(qCharlie, (b1, b2), b3);
Adjoint psiOp(qCharlie);
AssertQubit(Zero, qCharlie);
ResetAll([qMessage, qAlice, qBob, qCharlie]);
}
}
}
}