-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathvis_corrector.py
46 lines (37 loc) · 1.6 KB
/
vis_corrector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from models.preprocessor import PreProcessor
from models.entity_extractor import EntityExtractor
from models.detector import Detector
from models.questioner import Questioner
from models.answerer import Answerer
from models.claim_generator import ClaimGenerator
from models.refiner import Refiner
from tqdm import tqdm
from typing import List, Dict
import time
class Corrector:
def __init__(self, args) -> None:
# init all the model
self.preprocessor = PreProcessor(args)
self.entity_extractor = EntityExtractor(args)
self.detector = Detector(args)
self.questioner = Questioner(args)
self.answerer = Answerer(args)
self.claim_generator = ClaimGenerator(args)
self.refiner = Refiner(args)
print("Finish loading models.")
def correct(self, sample: Dict):
'''
sample is Dict containing at least two fields:
'input_desc': A passage that contains a description of the image.
'input_img': Path to a local image
'''
sample = self.preprocessor.generate_sentences(sample)
sample = self.entity_extractor.extract_entity(sample)
sample = self.detector.detect_objects(sample)
sample = self.questioner.generate_questions(sample)
sample = self.answerer.generate_answers(sample)
sample = self.claim_generator.generate_claim(sample)
sample = self.refiner.generate_output(sample)
return sample
def batch_correct(self, samples: List[Dict]):
return [self.correct(sample) for sample in tqdm(samples, total=len(samples))]