-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtextrnn.py
127 lines (104 loc) · 3.61 KB
/
textrnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torchtext
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torchtext.vocab import GloVe
import time
start=time.time()
#每篇提取200个单词
TEXT = torchtext.data.Field(lower=True, fix_length=200, batch_first=False)
LABEL = torchtext.data.Field(sequential=False)
train, test = torchtext.datasets.IMDB.splits(TEXT, LABEL)
TEXT.build_vocab(train, max_size=10000, min_freq=10, vectors=None)
LABEL.build_vocab(train)
BATCHSIZE = 256
train_iter, test_iter = torchtext.data.BucketIterator.splits((train, test), batch_size=BATCHSIZE)
embeding_dim = 100
hidden_size = 300
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.em = nn.Embedding(len(TEXT.vocab.stoi), embeding_dim)
self.lstm = nn.LSTM(embeding_dim, hidden_size)
self.fc1 = nn.Linear(hidden_size, 256)
self.fc2 = nn.Linear(256, 3)
def forward(self, x):
bz = x.shape[1]
h0 = torch.zeros((1, bz, hidden_size)).cuda()
c0 = torch.zeros((1, bz, hidden_size)).cuda()
#做词嵌入
x = self.em(x)
#然后将词嵌入交给lstm模型处理
r_o, _ = self.lstm(x, (h0, c0))
r_o = r_o[-1]
x = F.relu(self.fc1(r_o))
x = self.fc2(x)
return x
model = Net()
if torch.cuda.is_available():
model.to('cuda')
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
def fit(epoch, model, trainloader, testloader):
correct = 0
total = 0
running_loss = 0
model.train()
for b in trainloader:
x, y = b.text, b.label
if torch.cuda.is_available():
x, y = x.to('cuda'), y.to('cuda')
y_pred = model(x)
loss = loss_fn(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
y_pred = torch.argmax(y_pred, dim=1)
correct += (y_pred == y).sum().item()
total += y.size(0)
running_loss += loss.item()
# exp_lr_scheduler.step()
epoch_loss = running_loss / len(trainloader.dataset)
epoch_acc = correct / total
test_correct = 0
test_total = 0
test_running_loss = 0
model.eval()
with torch.no_grad():
for b in testloader:
x, y = b.text, b.label
if torch.cuda.is_available():
x, y = x.to('cuda'), y.to('cuda')
y_pred = model(x)
loss = loss_fn(y_pred, y)
y_pred = torch.argmax(y_pred, dim=1)
test_correct += (y_pred == y).sum().item()
test_total += y.size(0)
test_running_loss += loss.item()
epoch_test_loss = test_running_loss / len(testloader.dataset)
epoch_test_acc = test_correct / test_total
print('epoch: ', epoch,
'loss: ', round(epoch_loss, 3),
'accuracy:', round(epoch_acc, 3),
'test_loss: ', round(epoch_test_loss, 3),
'test_accuracy:', round(epoch_test_acc, 3)
)
return epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc = fit(epoch,
model,
train_iter,
test_iter)
train_loss.append(epoch_loss)
train_acc.append(epoch_acc)
test_loss.append(epoch_test_loss)
test_acc.append(epoch_test_acc)
end = time.time()
print(end-start)