-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
149 lines (102 loc) · 6.19 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import dgl
import torch
import numpy as np
import community
from utils import *
from augmentation import pseudo_generation, random_walk_generation, random_generation
def load_data(args):
assert args.dataset in ['dblp', 'amazon', 'epinions', 'lastfm', 'cora']
if args.dataset != 'lastfm':
graph = load_pickle('dataset/'+args.dataset+'/graph.pkl')
ui_graph = None
split_edge = load_pickle('dataset/'+args.dataset+'/split_edge.pkl')
else:
assert args.dataset_type == 'recommendation'
graph = load_pickle('dataset/'+args.dataset+'/item_graph.pkl')
ui_graph = load_pickle('dataset/'+args.dataset+'/ui_graph.pkl')
split_edge = load_pickle('dataset/'+args.dataset+'/split_edge.pkl')
return graph, ui_graph, split_edge
def louvain_partition(graph):
G = dgl.to_networkx(graph).to_undirected()
print(">> Louvain Clustering...")
partition = community.best_partition(G)
membership = []
for node in partition.keys():
membership.append(partition[node])
membership = np.array(membership)
num_cluster = np.max(membership) + 1
print(">> Louvain Clustering Finished, {:d} communities detected.".format(num_cluster))
return membership
def metis_partition(graph, num_parts=50):
print(">> Metis Clustering...")
dgl.distributed.partition.partition_graph(graph,
'dataset',
num_parts,
out_path="metis/output/", reshuffle=False,
balance_ntypes=None,
balance_edges=True)
membership = np.load("metis/output/node_map.npy")
print(">> Metis Clustering Finished, {:d} communities detected.".format(num_parts))
return membership
def edge_split(graph, split_edge, augmentation, args):
# assert args.load_partition == 1
if args.load_partition == 1: # load community memberships detected in advance
membership = load_pickle('dataset/'+args.dataset+'/louvain_'+args.dataset+'.pkl')
elif args.load_partition == 2:
membership = load_pickle('dataset/'+args.dataset+'/metis_'+args.dataset+'.pkl')
elif args.load_partition == -1:
membership = torch.tensor(louvain_partition(graph))
save_pickle('dataset/'+args.dataset+'/louvain_'+args.dataset+'.pkl', membership)
else:
membership = torch.tensor(metis_partition(graph))
save_pickle('dataset/'+args.dataset+'/metis_'+args.dataset+'.pkl', membership)
# generate augmented supervision set
if augmentation:
if args.aug_type == 'jaccard':
graph, split_edge = pseudo_generation(graph, membership, split_edge, add_edge=args.add_edge, aug_size=args.aug_size)
elif args.aug_type == 'random':
graph, split_edge = random_generation(graph, membership, split_edge, add_edge=args.add_edge, aug_size=args.aug_size)
else:
graph, split_edge = random_walk_generation(graph, membership, split_edge, aug_size=args.aug_size)
graph.edata['type'] = torch.zeros(graph.num_edges())
# split the edges into cross-links and internal-links
graph.edata['type'][membership[graph.edges()[0]] == membership[graph.edges()[1]]] = 1
data = {
'train': [[] for i in range(2)],
'valid': [[] for i in range(2)],
'test': [[] for i in range(2)]
}
if args.dataset_type == 'social':
####################### split train edge set #######################
train_src_dst = split_edge['train']['edge']
data['train'][0] = train_src_dst[membership[train_src_dst.t()[0]] == membership[train_src_dst.t()[1]]]
data['train'][1] = train_src_dst[membership[train_src_dst.t()[0]] != membership[train_src_dst.t()[1]]]
print('>> Train | intra-edge: {:d}, inter-edge: {:d}'.format(len(data['train'][0]), len(data['train'][1])))
####################### split valid edge set #######################
valid_src_dst = split_edge['valid']['edge']
data['valid'][0] = valid_src_dst[membership[valid_src_dst.t()[0]] == membership[valid_src_dst.t()[1]]]
data['valid'][1] = valid_src_dst[membership[valid_src_dst.t()[0]] != membership[valid_src_dst.t()[1]]]
print('>> Valid | intra-edge: {:d}, inter-edge: {:d}'.format(len(data['valid'][0]), len(data['valid'][1])))
####################### split test edge set #######################
test_src_dst = split_edge['test']['edge']
data['test'][0] = test_src_dst[membership[test_src_dst.t()[0]] == membership[test_src_dst.t()[1]]]
data['test'][1] = test_src_dst[membership[test_src_dst.t()[0]] != membership[test_src_dst.t()[1]]]
print('>> Test | intra-edge: {:d}, inter-edge: {:d}'.format(len(data['test'][0]), len(data['test'][1])))
graph.ndata['membership'] = membership
confidence = torch.ones(len(split_edge['train']['edge']))
elif args.dataset_type == 'recommendation':
user_membership = load_pickle('dataset/'+args.dataset+'/user_membership.pkl')
####################### split valid edge set #######################
valid_src_dst = split_edge['valid']['edge']
# import pdb; pdb.set_trace()
data['valid'][0] = valid_src_dst[user_membership[valid_src_dst.t()[0]] == membership[valid_src_dst.t()[1]-1892]]
data['valid'][1] = valid_src_dst[user_membership[valid_src_dst.t()[0]] != membership[valid_src_dst.t()[1]-1892]]
print('>> Valid | intra-edge: {:d}, inter-edge: {:d}'.format(len(data['valid'][0]), len(data['valid'][1])))
####################### split test edge set #######################
test_src_dst = split_edge['test']['edge']
data['test'][0] = test_src_dst[user_membership[test_src_dst.t()[0]] == membership[test_src_dst.t()[1]-1892]]
data['test'][1] = test_src_dst[user_membership[test_src_dst.t()[0]] != membership[test_src_dst.t()[1]-1892]]
print('>> Test | intra-edge: {:d}, inter-edge: {:d}'.format(len(data['test'][0]), len(data['test'][1])))
graph.ndata['membership'] = membership
confidence = torch.ones(len(split_edge['train']['edge']))
return data, split_edge, graph, membership, confidence