-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
141 lines (114 loc) · 5.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#Load Data
import argparse
import pickle
# import pandas as pd
from torch.utils.data import DataLoader
from sentence_transformers import LoggingHandler
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CERerankingEvalUpdated
# from sentence_transformers import InputExample
import logging
from datetime import datetime
import torch
# import regex as re
# from tqdm.autonotebook import tqdm
from testing import testing
from metrics import get_counterfactual_gap,LDR
import wandb
import os
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--gpu_id", type=int, default=0, help="gpu no.")
parser.add_argument("--seed", type=int, default=0, help="torch random seed")
parser.add_argument("--model", type=str, default='distilroberta-base', help="model name")
parser.add_argument("--local", default=False, action='store_true', help="changes path suitable to run locally")
parser.add_argument("--num_epochs", type=int, default=15, help="training Epochs")
parser.add_argument("--batch_size", type=int, default=16, help="batch size")
parser.add_argument("--warmup_steps", type=int, default=500, help="batch size")
parser.add_argument("--debias", type=str, default=None, help="select from debias methods "
"'reg' for regularization "
"'adv' for adversarial")
parser.add_argument("--lmbda", type=float, default=0., help="Regularization Strength")
parser.add_argument("--wandb", default=False, action='store_true', help="Logs on Wandb")
parser.add_argument("--project_name", type=str, default="unbalanced_sigmoid_JAR", help="Wandb project name")
parser.add_argument("--exp_name", type=str, default=None, help="Experiment Name")
#parser.add_argument("--balance", type=str, default="balanced", help="the gender distribution in training data is skewed towards")
#parser.add_argument("--anonymous", default=False, action='store_true', help="remove gender from candidate text")
base_args, _ = parser.parse_known_args()
model_name = base_args.model
#balance = base_args.balance
#if base_args.anonymous:
# condition = "UNK"
#else:
# condition = "KNO"
#train_batch_size = 64
pth = "/home/shahed/" if base_args.local==True else "/"
model_str = str(base_args.seed)+'_'+str(base_args.debias)+'_'+str(base_args.lmbda)+'_'+model_name+'_'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
model_save_path = f'./Models/'+model_str
config = vars(base_args)
config["model_save_path"] = model_save_path
config["train_path"] = f'{pth}share/hel/datasets/jobiqo/talent.com/JobRec/unbalanced_train_samples.pkl'
config["dev_path"] = f'{pth}share/hel/datasets/jobiqo/talent.com/JobRec/unbalanced_dev_samples.pkl'
#pos_neg_ration = 4
print(f"manual_seed({base_args.seed})")
torch.manual_seed(base_args.seed)
device = torch.device(f"cuda:{int(base_args.gpu_id)}")
torch.cuda.manual_seed(base_args.seed)
torch.backends.cudnn.deterministic = True
with open( f'{pth}share/hel/datasets/jobiqo/talent.com/JobRec/unbalanced_train_samples.pkl', 'rb') as file:
train_samples = pickle.load(file)
with open( f'{pth}share/hel/datasets/jobiqo/talent.com/JobRec/unbalanced_dev_samples.pkl', 'rb') as file:
dev_samples = pickle.load(file)
model = CrossEncoder(model_name, num_labels=1, device=device)
config["model_config"] = model.config
if base_args.wandb:
if not os.path.exists(model_save_path):
os.mkdir(model_save_path)
wandb_logger = wandb.init(dir=model_save_path,
project=base_args.project_name,
name=f"{base_args.exp_name if base_args.exp_name is not None else model_str}",
config=config)
else:
wandb_logger = None
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=base_args.batch_size)
evaluator = CERerankingEvalUpdated(dev_samples, name='train-eval', lmbda=base_args.lmbda)
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
warmup_steps = base_args.warmup_steps
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the model
model.fit(train_dataloader=train_dataloader,
evaluator=evaluator,
epochs=base_args.num_epochs,
warmup_steps=base_args.warmup_steps,
output_path=model_save_path,
save_best_model= "loss",
optimizer_params={'lr': 1e-5},
debias=base_args.debias, #remove this if using orininal sentence-transformer libaray
lmbda=base_args.lmbda,
use_amp=True,
wandb_logger= wandb_logger
)
model.save(model_save_path)
#Test latest model
testing(path=model_save_path,
gpu=base_args.gpu_id,
pth=pth,
wandb_logger=wandb_logger)
#Test latest model on counterfactuals
testing(path=model_save_path,
gpu=base_args.gpu_id,
pth=pth,
counterfactual=True,
wandb_logger=wandb_logger)
if wandb_logger is not None:
with open( model_save_path+'shahed_result.pkl','rb') as file1:
with open( model_save_path+'counter_result.pkl','rb') as file2:
dicts=pickle.load(file1)
dicts_counter = pickle.load(file2)
wandb_logger.log({"Final test LDR10": LDR(pth,dicts,dicts_counter),
"Final test counterfactual GAP": get_counterfactual_gap(pth,dicts,dicts_counter)})
if __name__ == "__main__":
main()