forked from ai-dawang/PlugNPlay-Modules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path(Arxiv2024)MDAF.py
142 lines (116 loc) · 5.74 KB
/
(Arxiv2024)MDAF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import torch.nn as nn
import numbers
from einops import rearrange
# Github地址 https://github.com/yysdck/SFFNet
# 论文地址 https://arxiv.org/pdf/2405.01992
def to_3d(x):
return rearrange(x, 'b c h w -> b (h w) c')
def to_4d(x, h, w):
return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
class BiasFree_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(BiasFree_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
sigma = x.var(-1, keepdim=True, unbiased=False)
return x / torch.sqrt(sigma + 1e-5) * self.weight
class WithBias_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(WithBias_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
mu = x.mean(-1, keepdim=True)
sigma = x.var(-1, keepdim=True, unbiased=False)
return (x - mu) / torch.sqrt(sigma + 1e-5) * self.weight + self.bias
class LayerNorm(nn.Module):
def __init__(self, dim, LayerNorm_type):
super(LayerNorm, self).__init__()
if LayerNorm_type == 'BiasFree':
self.body = BiasFree_LayerNorm(dim)
else:
self.body = WithBias_LayerNorm(dim)
def forward(self, x):
h, w = x.shape[-2:]
return to_4d(self.body(to_3d(x)), h, w)
# Multiscale Dual-Representation Alignment Filter (MDAF)
class MDAF(nn.Module):
def __init__(self, dim, num_heads=8, LayerNorm_type='WithBias'):
super(MDAF, self).__init__()
self.num_heads = num_heads
self.norm1 = LayerNorm(dim, LayerNorm_type)
self.norm2 = LayerNorm(dim, LayerNorm_type)
self.project_out = nn.Conv2d(dim, dim, kernel_size=1)
self.conv1_1_1 = nn.Conv2d(dim, dim, (1, 7), padding=(0, 3), groups=dim)
self.conv1_1_2 = nn.Conv2d(dim, dim, (1, 11), padding=(0, 5), groups=dim)
self.conv1_1_3 = nn.Conv2d(
dim, dim, (1, 21), padding=(0, 10), groups=dim)
self.conv1_2_1 = nn.Conv2d(dim, dim, (7, 1), padding=(3, 0), groups=dim)
self.conv1_2_2 = nn.Conv2d(dim, dim, (11, 1), padding=(5, 0), groups=dim)
self.conv1_2_3 = nn.Conv2d(
dim, dim, (21, 1), padding=(10, 0), groups=dim)
self.conv2_1_1 = nn.Conv2d(dim, dim, (1, 7), padding=(0, 3), groups=dim)
self.conv2_1_2 = nn.Conv2d(dim, dim, (1, 11), padding=(0, 5), groups=dim)
self.conv2_1_3 = nn.Conv2d(
dim, dim, (1, 21), padding=(0, 10), groups=dim)
self.conv2_2_1 = nn.Conv2d(dim, dim, (7, 1), padding=(3, 0), groups=dim)
self.conv2_2_2 = nn.Conv2d(dim, dim, (11, 1), padding=(5, 0), groups=dim)
self.conv2_2_3 = nn.Conv2d(
dim, dim, (21, 1), padding=(10, 0), groups=dim)
def forward(self, x1, x2):
b, c, h, w = x1.shape
x1 = self.norm1(x1)
x2 = self.norm2(x2)
attn_111 = self.conv1_1_1(x1)
attn_112 = self.conv1_1_2(x1)
attn_113 = self.conv1_1_3(x1)
attn_121 = self.conv1_2_1(x1)
attn_122 = self.conv1_2_2(x1)
attn_123 = self.conv1_2_3(x1)
attn_211 = self.conv2_1_1(x2)
attn_212 = self.conv2_1_2(x2)
attn_213 = self.conv2_1_3(x2)
attn_221 = self.conv2_2_1(x2)
attn_222 = self.conv2_2_2(x2)
attn_223 = self.conv2_2_3(x2)
out1 = attn_111 + attn_112 + attn_113 + attn_121 + attn_122 + attn_123
out2 = attn_211 + attn_212 + attn_213 + attn_221 + attn_222 + attn_223
out1 = self.project_out(out1)
out2 = self.project_out(out2)
k1 = rearrange(out1, 'b (head c) h w -> b head h (w c)', head=self.num_heads)
v1 = rearrange(out1, 'b (head c) h w -> b head h (w c)', head=self.num_heads)
k2 = rearrange(out2, 'b (head c) h w -> b head w (h c)', head=self.num_heads)
v2 = rearrange(out2, 'b (head c) h w -> b head w (h c)', head=self.num_heads)
q2 = rearrange(out1, 'b (head c) h w -> b head w (h c)', head=self.num_heads)
q1 = rearrange(out2, 'b (head c) h w -> b head h (w c)', head=self.num_heads)
q1 = torch.nn.functional.normalize(q1, dim=-1)
q2 = torch.nn.functional.normalize(q2, dim=-1)
k1 = torch.nn.functional.normalize(k1, dim=-1)
k2 = torch.nn.functional.normalize(k2, dim=-1)
attn1 = (q1 @ k1.transpose(-2, -1))
attn1 = attn1.softmax(dim=-1)
out3 = (attn1 @ v1) + q1
attn2 = (q2 @ k2.transpose(-2, -1))
attn2 = attn2.softmax(dim=-1)
out4 = (attn2 @ v2) + q2
out3 = rearrange(out3, 'b head h (w c) -> b (head c) h w', head=self.num_heads, h=h, w=w)
out4 = rearrange(out4, 'b head w (h c) -> b (head c) h w', head=self.num_heads, h=h, w=w)
out = self.project_out(out3) + self.project_out(out4) + x1 + x2
return out
if __name__ == '__main__':
mdaf = MDAF(dim=32) # 指定通道数
x1 = torch.randn(3, 32, 64, 64) # b c h w 输入
x2 = torch.randn(3, 32, 64, 64)
output = mdaf(x1, x2)
print(output.size()) # torch.Size([3, 32, 64, 64])