forked from mt-cly/SimCMF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunction.py
165 lines (136 loc) · 7.1 KB
/
function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import sys
from torch import nn
from utils import *
from tqdm import tqdm
from monai.losses import DiceCELoss
import torch.distributed as dist
import torch
def train_sam(args, net: nn.Module, optimizer, train_loader, epoch, writer=None, schedulers=None, vis = 50):
# train mode
net.train()
epoch_loss = 0
optimizer.zero_grad()
lossfunc = DiceCELoss(sigmoid=True, squared_pred=True, reduction='mean')
# # ========== statistics of mean & std ==============
# values = []
# for idx, pack in enumerate(train_loader):
# imgs = pack['image'].numpy()
# values.append(imgs)
# print('mean', [np.stack(values[:-1])[:,:,i].mean() for i in range(values[0].shape[1])])
# print('std' , [np.stack(values[:-1])[:,:,i].std() for i in range(values[0].shape[1])])
# # =================================================
with tqdm(total=len(train_loader), desc=f'Epoch {epoch}', unit='img') as pbar:
for iter, pack in enumerate(train_loader):
imgs = pack['image'].to(dtype = torch.float32).cuda()
masks = pack['label'].to(dtype = torch.float32).cuda()
# 'pt' points should with shape of [bs, num_click, 2]
if 'pt' not in pack:
imgs, pt, masks = generate_click_prompt(imgs, masks)
else:
pt = pack['pt']
point_labels = pack['p_label']
name = ''
for item_name in pack['image_meta_dict']['filename_or_obj']:
name += item_name.split('/')[-1].split('.')[0] + '_'
'''Train'''
click_prompt = (torch.as_tensor(pt, dtype=torch.float).cuda(), torch.as_tensor(point_labels, dtype=torch.float).cuda())
pred = net.forward(imgs, click_prompt)
loss = lossfunc(pred, masks)
epoch_loss += loss.item()
pbar.set_postfix(**{'loss (batch)': loss.item()})
loss.backward()
# nn.utils.clip_grad_value_(net.parameters(), 0.1)
optimizer.step()
optimizer.zero_grad()
'''vis images'''
if vis and (iter+1) % vis == 0:
save_path = os.path.join(args.path_helper['sample_path'], f'train_{name}_epoch={epoch}.jpg')
new_vis(args.modality, pack['orig_img'], pred, masks, save_path, pack['new_modality'], reverse=False, points=click_prompt[0][:, 0])
pbar.update()
return epoch_loss/len(train_loader)
def validation_sam(args, val_loader, epoch, net: nn.Module , vis):
# eval mode
net.eval()
net = net.module if args.ddp else net
n_val = len(val_loader) # the number of batch
ave_res, mix_res = (0,0,0,0), (0,0,0,0)
tot = 0
hard = 0
# threshold = (0.1, 0.3, 0.5, 0.7, 0.9)
threshold = [0]
lossfunc = DiceCELoss(sigmoid=True, squared_pred=True, reduction='mean')
masks_num = 0
with tqdm(total=n_val, desc='Validation round', unit='batch', leave=False) as pbar:
for ind, pack in enumerate(val_loader):
imgsw = pack['image'].to(dtype = torch.float32).cuda()
orig_img = pack['orig_img'].to(dtype = torch.float32)
masksw = pack['label'].to(dtype = torch.float32).cuda()
new_modality = pack['new_modality'].to(dtype = torch.float32)
valid_region_ids = pack['valid_region_ids']
# for k,v in pack['image_meta_dict'].items():
# print(k)
if 'pt' not in pack:
imgsw, ptw, masksw = generate_click_prompt(imgsw, masksw)
else:
ptw = pack['pt']
point_labels = pack['p_label']
name = pack['image_meta_dict']['filename_or_obj']
buoy = 0
evl_ch = int(imgsw.size(-1))
while (buoy + evl_ch) <= imgsw.size(-1):
pt = ptw
imgs = imgsw[..., buoy:buoy + evl_ch]
masks = masksw[..., buoy:buoy + evl_ch]
buoy += evl_ch
'''init'''
if hard:
true_mask_ave = (true_mask_ave > 0.5).float()
#true_mask_ave = cons_tensor(true_mask_ave)
b_size,c,w,h = imgs.size()
imgs = imgs.to(dtype =torch.float32).cuda()
coords_torch = torch.as_tensor(pt, dtype=torch.float32).cuda()
labels_torch = torch.as_tensor(point_labels, dtype=torch.int).cuda()
'''test'''
with torch.no_grad():
for bs_id in range(b_size):
name_tmp = name[bs_id].split('/')[-1].split('.')[0]
img_tmp = imgs[bs_id:bs_id+1]
coords_tmp, label_tmp = coords_torch[bs_id:bs_id+1], labels_torch[bs_id:bs_id+1]
# first calculate image feature which can be used repeatedly
img_feature = net.image_encoder(img_tmp)
for pnt_id, region_id in enumerate(valid_region_ids[bs_id]):
mask_tmp = masks.detach().clone()
mask_tmp[mask_tmp != region_id] = 0
mask_tmp[mask_tmp == region_id] = 1
prompt_tmp = (coords_tmp[:, pnt_id: pnt_id+1], label_tmp[:, pnt_id: pnt_id+1])
se, de = net.prompt_encoder(
points=prompt_tmp,
boxes=None,
masks=None,
)
pred, _ = net.mask_decoder(
image_embeddings=img_feature, # [2, 256, 64, 64]
image_pe=net.prompt_encoder.get_dense_pe(), # [1, 256, 64, 64]
sparse_prompt_embeddings=se, # [2,2,256]
dense_prompt_embeddings=de, # [2, 256, 64, 64]
multimask_output=False,
)
tot += lossfunc(pred, mask_tmp)
'''vis images'''
if vis and (bs_id+1) % vis == 0:
save_path = os.path.join(args.path_helper['sample_path'], f'test_{name_tmp}_epoch={epoch}_maskid={region_id}.jpg')
new_vis(args.modality, orig_img, pred, mask_tmp, save_path, new_modality, reverse=False, points=prompt_tmp[0][:, 0])
temp = eval_seg(pred, mask_tmp, threshold)
mix_res = tuple([sum(a) for a in zip(mix_res, temp)])
masks_num += 1
pbar.update()
tol, eiou, edice = tot.item(), mix_res[0], mix_res[1]
# gather from all gpus if ddp
if args.ddp:
result = torch.Tensor([tol, eiou, edice, masks_num]).type(torch.float64).cpu()
all_rst = [torch.zeros(4, dtype=torch.float64) for _ in range(dist.get_world_size())]
dist.all_gather(all_rst, result)
result = torch.stack(all_rst).sum(0)
tol, eiou, edice, masks_num = tuple(result)
tol, eiou, edice = tol/masks_num, eiou/masks_num, edice/masks_num
return tol, eiou, edice