forked from mt-cly/SimCMF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·427 lines (369 loc) · 15.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import sys
import cv2
from torch.autograd import Function
import torchvision
import random
import logging
import os
import time
from datetime import datetime
from itertools import chain
import dateutil.tz
import cfg
import numpy as np
import torch
from conf.global_settings import modality_channel_map
def get_network(args, net, proj_type):
""" return given network
"""
in_chans = modality_channel_map[args.modality]
pretrained_state_dict = torch.load(args.sam_ckpt) if args.sam_ckpt and len(args.sam_ckpt)>0 else None
params = {'checkpoint': args.sam_ckpt,
'in_chans': in_chans,
'proj_type': proj_type,
'pretrained_state_dict': pretrained_state_dict}
if net in ['sam_full_finetune', 'sam_linear_probing']:
from models.sam_naive import sam_model_registry
net = sam_model_registry['vit_b'](args, **params)
elif net == 'sam_mlp_adapter':
from models.sam_mlp_adapter import sam_model_registry
net = sam_model_registry['vit_b'](args, **params)
elif net == 'sam_lora':
from models.sam_lora import sam_model_registry
net = sam_model_registry['vit_b'](args, **params)
elif net == 'sam_prompt':
from models.sam_prompt import sam_model_registry
net = sam_model_registry['vit_b'](args, **params)
elif net == 'sam_prefix':
from models.sam_prefix import sam_model_registry
net = sam_model_registry['vit_b'](args, **params)
else:
print('the network name you have entered is not supported yet')
sys.exit()
return net
def set_trainable_params(net, net_name):
trainable_params_names = [k for k, v in net.named_parameters()]
if net_name in ['sam_full_finetune']:
pass
elif net_name in ['sam_linear_probing']:
for n, value in net.named_parameters():
if all([not n.__contains__(i) for i in ["patch_embed", "pos_embed"]]):
trainable_params_names.remove(n)
value.requires_grad = False
elif net_name in ['sam_lora']:
for n, value in net.named_parameters():
if "lora" not in n:
trainable_params_names.remove(n)
value.requires_grad = False
elif net_name in ['sam_prompt']:
for n, value in net.named_parameters():
if "prompt" not in n:
trainable_params_names.remove(n)
value.requires_grad = False
elif net_name in ['sam_prefix']:
for n, value in net.named_parameters():
if "prefix" not in n:
trainable_params_names.remove(n)
value.requires_grad = False
elif net_name in ['sam_mlp_adapter']:
for n, value in net.named_parameters():
if "Adapter" not in n:
trainable_params_names.remove(n)
value.requires_grad = False
else:
raise NotImplementedError
# ==== projector and deep_fusion_blocks always trainable =====
for n, value in net.named_parameters():
if "image_encoder.projector" in n:
trainable_params_names.append(n)
value.requires_grad = True
elif "image_encoder.deep_fusion_blocks" in n:
trainable_params_names.append(n)
value.requires_grad = True
elif "image_encoder.final_block" in n:
trainable_params_names.append(n)
value.requires_grad = True
# ===== prompt encoder is always frozen, even it is set to requires_grad=True, refer to forward function of sam.
for n, value in net.prompt_encoder.named_parameters():
value.requires_grad = False
# ==============Params
print("TOTAL NUMBER OF PARAMS: {}".format(np.array([torch.numel(i) for i in net.parameters()]).sum()))
print("TOTAL NUMBER OF TRAINABLE PARAMS: {}".format(
np.array([torch.numel(i) for i in net.parameters() if i.requires_grad]).sum()))
print("=============== end trainable params =======================")
# ==================FLOPS
# from thop import profile
# img = torch.Tensor(1,9,1024,1024)
# pnt = (torch.zeros(1, 1, 2),torch.ones(1, 1))
# flops,params = profile(net, inputs=(img,pnt,))
# print(flops/1e9, params)
return trainable_params_names
def resume_weights(net, weights):
if weights is not None:
print(f'=> resuming net weights from {weights}')
assert os.path.exists(weights)
checkpoint_file = os.path.join(weights)
assert os.path.exists(checkpoint_file)
checkpoint = torch.load(checkpoint_file, map_location='cpu')
net.load_state_dict(checkpoint['state_dict'], strict=False)
# args.path_helper = checkpoint['path_helper']
# logger = create_logger(args.path_helper['log_path'])
# print(f'=> loaded checkpoint {checkpoint_file} (epoch {start_epoch})')
return net
def resume_optim_scheduler_epoch(optimizer, scheduler, weights):
start_epoch = 0
if weights is not None:
print(f'=> resuming optimizer & scheduler & epoch from {weights}')
assert os.path.exists(weights)
checkpoint_file = os.path.join(weights)
assert os.path.exists(checkpoint_file)
checkpoint = torch.load(checkpoint_file)
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
start_epoch = checkpoint['epoch']
return optimizer, scheduler, start_epoch
def save_checkpoint(states, is_best, output_dir,filename):
torch.save(states, os.path.join(output_dir, filename))
if is_best:
torch.save(states, os.path.join(output_dir, 'checkpoint_best.pth'))
def create_logger(log_dir, phase='train'):
time_str = time.strftime('%Y-%m-%d-%H-%M')
log_file = '{}_{}.log'.format(time_str, phase)
final_log_file = os.path.join(log_dir, log_file)
head = '%(asctime)-15s %(message)s'
logging.basicConfig(filename=str(final_log_file),
format=head)
logger = logging.getLogger('sam')
logger.setLevel(logging.INFO)
console = logging.StreamHandler()
logger.addHandler(console)
file_handler = logging.FileHandler(final_log_file)
logger.addHandler(file_handler)
return logger
def set_log_dir(root_dir, exp_name):
path_dict = {}
os.makedirs(root_dir, exist_ok=True)
# set log path
exp_path = os.path.join(root_dir, exp_name)
now = datetime.now(dateutil.tz.tzlocal())
timestamp = now.strftime('%Y_%m_%d_%H_%M_%S')
prefix = exp_path + '_' + timestamp
os.makedirs(prefix)
path_dict['prefix'] = prefix
# set checkpoint path
ckpt_path = os.path.join(prefix, 'Model')
os.makedirs(ckpt_path)
path_dict['ckpt_path'] = ckpt_path
log_path = os.path.join(prefix, 'Log')
os.makedirs(log_path)
path_dict['log_path'] = log_path
# set sample image path for fid calculation
sample_path = os.path.join(prefix, 'Samples')
os.makedirs(sample_path)
path_dict['sample_path'] = sample_path
return path_dict
def iou(outputs: np.array, labels: np.array):
SMOOTH = 1e-6
intersection = (outputs & labels).sum((1, 2))
union = (outputs | labels).sum((1, 2))
iou = (intersection + SMOOTH) / (union + SMOOTH)
return iou.mean()
class DiceCoeff(Function):
"""Dice coeff for individual examples"""
def forward(self, input, target):
self.save_for_backward(input, target)
eps = 0.0001
self.inter = torch.dot(input.view(-1), target.view(-1))
self.union = torch.sum(input) + torch.sum(target) + eps
t = (2 * self.inter.float() + eps) / self.union.float()
return t
# This function has only a single output, so it gets only one gradient
def backward(self, grad_output):
input, target = self.saved_variables
grad_input = grad_target = None
if self.needs_input_grad[0]:
grad_input = grad_output * 2 * (target * self.union - self.inter) \
/ (self.union * self.union)
if self.needs_input_grad[1]:
grad_target = None
return grad_input, grad_target
def dice_coeff(input, target):
"""Dice coeff for batches"""
if input.is_cuda:
s = torch.FloatTensor(1).to(device = input.device).zero_()
else:
s = torch.FloatTensor(1).zero_()
for i, c in enumerate(zip(input, target)):
s = s + DiceCoeff().forward(c[0], c[1])
return s / (i + 1)
def eval_seg(pred,true_mask_p,threshold):
'''
threshold: a int or a tuple of int
masks: [b,2,h,w]
pred: [b,2,h,w]
'''
b, c, h, w = pred.size()
if c == 2:
iou_d, iou_c, disc_dice, cup_dice = 0,0,0,0
for th in threshold:
gt_vmask_p = (true_mask_p > th).float()
vpred = (pred > th).float()
vpred_cpu = vpred.cpu()
disc_pred = vpred_cpu[:,0,:,:].numpy().astype('int32')
cup_pred = vpred_cpu[:,1,:,:].numpy().astype('int32')
disc_mask = gt_vmask_p [:,0,:,:].squeeze(1).cpu().numpy().astype('int32')
cup_mask = gt_vmask_p [:, 1, :, :].squeeze(1).cpu().numpy().astype('int32')
'''iou for numpy'''
iou_d += iou(disc_pred,disc_mask)
iou_c += iou(cup_pred,cup_mask)
'''dice for torch'''
disc_dice += dice_coeff(vpred[:,0,:,:], gt_vmask_p[:,0,:,:]).item()
cup_dice += dice_coeff(vpred[:,1,:,:], gt_vmask_p[:,1,:,:]).item()
return iou_d / len(threshold), iou_c / len(threshold), disc_dice / len(threshold), cup_dice / len(threshold)
else:
eiou, edice = 0,0
for th in threshold:
gt_vmask_p = (true_mask_p > th).float()
vpred = (pred > th).float()
vpred_cpu = vpred.cpu()
disc_pred = vpred_cpu[:,0,:,:].numpy().astype('int32')
disc_mask = gt_vmask_p [:,0,:,:].squeeze(1).cpu().numpy().astype('int32')
'''iou for numpy'''
eiou += iou(disc_pred,disc_mask)
'''dice for torch'''
edice += dice_coeff(vpred[:,0,:,:], gt_vmask_p[:,0,:,:]).item()
return eiou / len(threshold), edice / len(threshold)
def random_click(mask, point_labels = 1, region_id=1, middle=False):
''' randomly sample the click from regions of mask == mask_id
Args:
mask: [h, w]
point_labels: unused params
region_id: the region id to be sampled
Return:
click: the sampled click coordination with shape [1, 2]
'''
indices = np.argwhere(mask == region_id)
# !!!! to align the SAM input, return the click with order (x, y) instead of (y, x)
indices = np.ascontiguousarray(np.flip(indices, axis=1))
if middle:
return indices[int(len(indices)/2)]
else:
return indices[np.random.randint(len(indices))]
def generate_click_prompt(img, msk, pt_label=1):
# return: prompt, prompt mask
pt_list = []
msk_list = []
b, c, h, w, d = msk.size()
msk = msk[:,0,:,:,:]
for i in range(d):
pt_list_s = []
msk_list_s = []
for j in range(b):
msk_s = msk[j,:,:,i]
indices = torch.nonzero(msk_s)
if indices.size(0) == 0:
# generate a random array between [0-h, 0-h]:
random_index = torch.randint(0, h, (2,)).to(device = msk.device)
new_s = msk_s
else:
random_index = random.choice(indices)
label = msk_s[random_index[0], random_index[1]]
new_s = torch.zeros_like(msk_s)
# convert bool tensor to int
new_s = (msk_s == label).to(dtype = torch.float)
# new_s[msk_s == label] = 1
pt_list_s.append(random_index)
msk_list_s.append(new_s)
pts = torch.stack(pt_list_s, dim=0)
msks = torch.stack(msk_list_s, dim=0)
pt_list.append(pts)
msk_list.append(msks)
pt = torch.stack(pt_list, dim=-1)
msk = torch.stack(msk_list, dim=-1)
# !!!! to align the SAM input, return the click with order (x, y) instead of (y, x)
pt = np.ascontiguousarray(np.flip(pt, axis=1))
msk = msk.unsqueeze(1)
return img, pt, msk #[b, 2, d], [b, c, h, w, d]
def visal_click(modality, img, click):
'''
img: [H, W, 3] or [H, W, 1] \in [0, 255]
mask: [H, W, 1] \in {0,1}
'''
if type(img) == torch.Tensor:
img = img.cpu().numpy()
if type(click) == torch.Tensor:
click = click.cpu().numpy()
x,y = click
click_map = np.zeros_like(img)[...,:1]
h, w, _ = click_map.shape
d = 5
for delta_x in range(-d-2, d+2):
for delta_y in range(-d-2, d+2):
if delta_y* delta_y+ delta_x* delta_x > d*d:
continue
if y+delta_y < 0 or y+delta_y >=h:
continue
if x+delta_x < 0 or x+delta_x >= w:
continue
click_map[y+delta_y, x+delta_x, 0] = 1
map = visual_mask(modality, img, click_map)
return map
def visual_mask(modality, img, mask):
'''
img: [H, W, 3] or [H, W, 1] \in [0, 255]
mask: [H, W, 1] \in {0,1}
'''
palette_dict = {'hha':[255, 255, 255],
'rgbhha': [255, 255, 255],
'd': [230, 170, 143],
'rgbd': [230, 170, 143],
'nir': [0, 255, 255],
'rgbnir': [0, 255, 255],
}
palette = np.array(palette_dict[modality])
if type(img) == torch.Tensor:
img = img.cpu().numpy()
if type(mask) == torch.Tensor:
mask = mask.cpu().numpy()
if img.shape[-1] == 1:
img = np.repeat(img, 3, -1)
alpha = 0.4
color = np.ones_like(mask) * palette[None, None]
map = img * (mask==0) + (img * alpha + color * (1-alpha)) * (mask == 1)
return map
def new_vis(modality, imgs, pred_masks, gt_masks, save_path, new_modality, reverse = False, points = None):
"""
params:
imgs: [bs, c, h, w], where c is the channel of modality. for example, 3 for rgb, 9 for polarization
pred_masks: [bs, c, h, w], where c=1/2
gt_masks: [bs, c, h, w], where c=1/2
save_path: str
reverse: if true, setting pred_masks=1-pred_masks, gt_masks=1-gt_masks
points: [bs, 2]
"""
b,c,h,w = pred_masks.size()
imgs = torchvision.transforms.Resize((h, w))(imgs)
img = imgs.permute(0,2,3,1)[0]
new_modality = torchvision.transforms.Resize((h, w))(new_modality)
new_modality_vis = new_modality.permute(0,2,3,1)[0].cpu().numpy()*255
if modality == 'd':
new_modality_vis = cv2.applyColorMap((new_modality_vis).astype(np.uint8), 4)
elif modality == 'hha':
new_modality_vis = np.flip(new_modality_vis, -1)
# new_modality_vis = (new_modality_vis*255).astype(np.uint8)
pred_mask = pred_masks.permute(0,2,3,1)[0]
gt_mask = gt_masks.permute(0,2,3,1)[0]
vis_pred = visual_mask(modality, new_modality_vis , pred_mask>0)
vis_gt = visual_mask(modality, new_modality_vis, gt_mask)
click = np.round(points.cpu()/4).to(dtype = torch.int)[0] # 1024 in 256 out
vis_click = visal_click(modality, new_modality_vis, click)
cv2.imwrite(save_path.replace('.jpg', '_pred.jpg'), vis_pred)
cv2.imwrite(save_path.replace('.jpg', '_gt.jpg'), vis_gt)
cv2.imwrite(save_path.replace('.jpg', '_gt_mask.jpg'), 255 * gt_mask.cpu().numpy())
cv2.imwrite(save_path.replace('.jpg', '_pred_mask.jpg'),255 * (pred_mask>0).long().cpu().numpy())
cv2.imwrite(save_path.replace('.jpg', '_rgb.jpg'), img.cpu().numpy())
cv2.imwrite(save_path.replace('.jpg', '_new_modality.jpg'), new_modality_vis)
cv2.imwrite(save_path.replace('.jpg', '_click.jpg'), vis_click)
#
# new_modality_vis = new_modality_vis.cpu().numpy()
# cv2.imwrite(save_path.replace('.jpg', '_newmodality.jpg'), new_modality_vis)