forked from Ji4chenLi/t2v-turbo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp_ms.py
321 lines (282 loc) · 9.79 KB
/
app_ms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Adapted from https://github.com/luosiallen/latent-consistency-model
from __future__ import annotations
import argparse
import os
import random
import time
import gradio as gr
import numpy as np
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
from pipeline.t2v_turbo_ms_pipeline import T2VTurboMSPipeline
from utils.common_utils import set_torch_2_attn
try:
import intel_extension_for_pytorch as ipex
except:
pass
from transformers import CLIPTokenizer, CLIPTextModel
from model_scope.unet_3d_condition import UNet3DConditionModel
from utils.lora import collapse_lora, monkeypatch_remove_lora
from utils.lora_handler import LoraHandler
import torch
import torchvision
from diffusers.models import AutoencoderKL
from concurrent.futures import ThreadPoolExecutor
import uuid
DESCRIPTION = """# T2V-Turbo 🚀
We provide T2V-Turbo (MS) distilled from [ModelScopeT2V](https://huggingface.co/ali-vilab/text-to-video-ms-1.7b/) with the reward feedback from [HPSv2.1](https://github.com/tgxs002/HPSv2/tree/master) and [ViCLIP](https://huggingface.co/OpenGVLab/ViCLIP).
You can download the the models from [here](https://huggingface.co/jiachenli-ucsb/T2V-Turbo-MS). Check out our [Project page](https://t2v-turbo.github.io) 😄
"""
if torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CUDA 😀</p>"
elif hasattr(torch, "xpu") and torch.xpu.is_available():
DESCRIPTION += "\n<p>Running on XPU 🤓</p>"
else:
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
"""
Operation System Options:
If you are using MacOS, please set the following (device="mps") ;
If you are using Linux & Windows with Nvidia GPU, please set the device="cuda";
If you are using Linux & Windows with Intel Arc GPU, please set the device="xpu";
"""
# device = "mps" # MacOS
# device = "xpu" # Intel Arc GPU
device = "cuda" # Linux & Windows
"""
DTYPE Options:
To reduce GPU memory you can set "DTYPE=torch.float16",
but image quality might be compromised
"""
DTYPE = (
torch.float16
) # torch.float16 works as well, but pictures seem to be a bit worse
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_video(
vid_tensor, profile: gr.OAuthProfile | None, metadata: dict, root_path="./"
):
unique_name = str(uuid.uuid4()) + ".mp4"
unique_name = os.path.join(root_path, unique_name)
video = vid_tensor.detach().cpu()
video = torch.clamp(video.float(), -1.0, 1.0)
video = video.permute(1, 0, 2, 3) # t,c,h,w
video = (video + 1.0) / 2.0
video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
unique_name, video, fps=8, video_codec="h264", options={"crf": "10"}
)
return unique_name
def save_videos(
video_array,
profile: gr.OAuthProfile | None,
metadata: dict,
):
paths = []
root_path = "./videos/"
os.makedirs(root_path, exist_ok=True)
with ThreadPoolExecutor() as executor:
paths = list(
executor.map(
save_video,
video_array,
[profile] * len(video_array),
[metadata] * len(video_array),
[root_path] * len(video_array),
)
)
return paths[0]
def generate(
prompt: str,
seed: int = 0,
guidance_scale: float = 7.5,
num_inference_steps: int = 4,
num_frames: int = 16,
randomize_seed: bool = False,
param_dtype="torch.float16",
progress=gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None,
):
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
pipeline.to(
torch_device=device,
torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32,
)
start_time = time.time()
result = pipeline(
prompt=prompt,
frames=num_frames,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_videos_per_prompt=1,
)
paths = save_videos(
result,
profile,
metadata={
"prompt": prompt,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
},
)
print(time.time() - start_time)
return paths, seed
examples = [
"a dog wearing vr goggles on a boat",
"Darth vader surfing in waves.",
"Mickey Mouse is dancing on white background",
"close-up shot, high detailed, A boy with a baseball cap, freckles, and a playful grin.",
"an old man with a long grey beard and green eyes, camera rotate anticlockwise.",
"The flowing water sparkled under the golden sunrise in a peaceful mountain river.",
"close-up shot, high detailed, a girl with long curly blonde hair and sunglasses.",
"Slow motion steam rises from a hot cup of coffee.",
"A fluffy teddy bear sits on a bed of soft pillows surrounded by children's toys.",
]
if __name__ == "__main__":
# Add model name as parameter
parser = argparse.ArgumentParser(description="Gradio demo for T2V-Turbo.")
parser.add_argument(
"--unet_dir",
type=str,
help="Directory of the UNet model",
)
args = parser.parse_args()
pretrained_model_path = "ali-vilab/text-to-video-ms-1.7b"
tokenizer = CLIPTokenizer.from_pretrained(
pretrained_model_path, subfolder="tokenizer"
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_path, subfolder="text_encoder"
)
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
teacher_unet = UNet3DConditionModel.from_pretrained(
pretrained_model_path, subfolder="unet"
)
time_cond_proj_dim = 256
unet = UNet3DConditionModel.from_config(
teacher_unet.config, time_cond_proj_dim=time_cond_proj_dim
)
# load teacher_unet weights into unet
unet.load_state_dict(teacher_unet.state_dict(), strict=False)
del teacher_unet
set_torch_2_attn(unet)
use_unet_lora = True
lora_manager = LoraHandler(
version="cloneofsimo",
use_unet_lora=use_unet_lora,
save_for_webui=True,
)
lora_manager.add_lora_to_model(
use_unet_lora,
unet,
lora_manager.unet_replace_modules,
lora_path=args.unet_dir,
dropout=0.1,
r=32,
)
collapse_lora(unet, lora_manager.unet_replace_modules)
monkeypatch_remove_lora(unet)
unet.eval()
noise_scheduler = T2VTurboScheduler()
pipeline = T2VTurboMSPipeline(
unet=unet,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=noise_scheduler,
)
pipeline.to(device)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result_video = gr.Video(
label="Generated Video", interactive=False, autoplay=True
)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True,
)
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
dtype_choices = ["torch.float16", "torch.float32"]
param_dtype = gr.Radio(
dtype_choices,
label="torch.dtype",
value=dtype_choices[0],
interactive=True,
info="To save GPU memory, use torch.float16. For better quality, use torch.float32.",
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Row():
num_frames = gr.Slider(
label="Number of Video Frames",
minimum=16,
maximum=48,
step=8,
value=16,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result_video,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
seed,
guidance_scale,
num_inference_steps,
num_frames,
randomize_seed,
param_dtype,
],
outputs=[result_video, seed],
api_name="run",
)
demo.queue(api_open=False)
# demo.queue(max_size=20).launch()
demo.launch()