forked from RansML/Bayesian_Hilbert_Maps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_kitti2d_cuda.py
executable file
·111 lines (95 loc) · 3.77 KB
/
demo_kitti2d_cuda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
"""
# 2D kitti dataset test
# In this demo, 1) how to run kitti in cpu/gpu with pytorch, 2) how to partition the map and run parallelly
# TODO: setup for cuda
"""
import sys
import os
import time
import numpy as np
import pandas as pd
import torch as pt
import matplotlib.pyplot as pl
from bhmtorch_cuda import BHM2D_PYTORCH_CUDA
def getPartitions(cell_max_min, nPartx1, nPartx2):
"""
:param cell_max_min: The size of the entire area
:param nPartx1: How many partitions along the longitude
:param nPartx2: How many partitions along the latitude
:return: a list of all partitions
"""
width = cell_max_min[1] - cell_max_min[0]
height = cell_max_min[3] - cell_max_min[2]
cell_max_min_segs = []
for x in range(nPartx1):
for y in range(nPartx2):
seg_i = (cell_max_min[0] + width / nPartx1 * x, cell_max_min[0] + width / nPartx1 * (x + 1), \
cell_max_min[2] + height / nPartx2 * y, cell_max_min[2] + height / nPartx2 * (y + 1))
cell_max_min_segs.append(seg_i)
return cell_max_min_segs
def load_parameters(case):
parameters = \
{'kitti1': \
( os.path.abspath('../../Datasets/kitti/kitti2011_09_26_drive0001_frame'),
(2, 2), #hinge point resolution
(-80, 80, -80, 80), #area [min1, max1, min2, max2]
None,
None,
0.5, #gamma
),
}
return parameters[case]
# Settings
dtype = pt.float32
device = pt.device("cpu")
#device = pt.device("cuda:0") # Uncomment this to run on GPU
# Read the file
fn_train, cell_resolution, cell_max_min, _, _, gamma = load_parameters('kitti1')
# Partition the environment into to 4 areas
# TODO: We can parallelize this
cell_max_min_segments = getPartitions(cell_max_min, 2, 2)
# Query data
# Read data
for framei in range(108):
print('\nReading '+fn_train+'{}.csv...'.format(framei))
g = pd.read_csv(fn_train+'{}.csv'.format(framei), delimiter=',').values[:, :]
# Filter data
layer = np.logical_and(g[:,2] >= 0.02, g[:,2] <= 0.125)
#layer = np.logical_and(g[:, 2] >= -0.6, g[:, 2] <= -0.5)
g = pt.tensor(g[layer, :], dtype=pt.float32)
X = g[:, :2]
y = g[:, 3].reshape(-1, 1)
if pt.cuda.is_available():
X = X.cuda()
y = y.cuda()
toPlot = []
totalTime = 0
for segi in range(len(cell_max_min_segments)):
print(' Mapping segment {} of {}...'.format(segi+1,len(cell_max_min_segments)))
cell_max_min = cell_max_min_segments[segi]
bhm_mdl = BHM2D_PYTORCH_CUDA(gamma=gamma, grid=None, cell_resolution=cell_resolution, cell_max_min=cell_max_min, X=X, nIter=1)
t1 = time.time()
bhm_mdl.fit(X, y)
t2 = time.time()
totalTime += (t2-t1)
# query the model
q_resolution = 0.5
#TODO: move this meshrid creation outside the loop
xx, yy = np.meshgrid(np.arange(cell_max_min[0], cell_max_min[1] - 1, q_resolution),
np.arange(cell_max_min[2], cell_max_min[3] - 1, q_resolution))
grid = np.hstack((xx.ravel()[:, np.newaxis], yy.ravel()[:, np.newaxis]))
Xq = pt.tensor(grid, dtype=pt.float32).cuda()
yq = bhm_mdl.predict(Xq)
toPlot.append((Xq,yq))
print(' Total training time={} s'.format(np.round(totalTime, 2)))
# Plot frame i
pl.close('all')
for segi in range(len(cell_max_min_segments)):
ploti = toPlot[segi]
Xq, yq = ploti[0].cpu(), ploti[1].cpu()
pl.scatter(Xq[:, 0], Xq[:, 1], c=yq, cmap='jet', s=5, vmin=0, vmax=1, edgecolors='')
pl.colorbar()
pl.xlim([-80,80]); pl.ylim([-80,80])
pl.title('kitti2011_09_26_drive0001_frame{}'.format(framei))
#pl.savefig(os.path.abspath('../../Outputs/kitti2011_09_26_drive0001_frame{}.png'.format(framei)))
pl.show()