-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfce_estimate_modular.m
1055 lines (894 loc) · 34.3 KB
/
tfce_estimate_modular.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Main loop
for con = 1:length(Ic0)
Ic = Ic0(con);
xCon = SPM.xCon(Ic);
[isValid, n_perm, n_perm_break] = initializeAndCheckErrors(job, Ic, SPM);
if ~isValid
fprintf('Initialization error.\n');
return
end
[isValid, exch_blocks, n_exch_blocks, is_eoi, F_contrast_multiple_rows, use_half_permutations, c0] = calculateContrastsAndExchangeabilityBlocks(xCon, xX);
if ~isValid
fprintf('Initialization error.\n');
return
end
fprintf('Use contrast #%d of %s\n',Ic,job.data{1})
if n_perm_full < n_perm
fprintf('Warning: Maximum number of possible permutations is lower than defined number of permutations: %d\n',n_perm_full);
end
n_perm = min([n_perm n_perm_full]);
fprintf('Number of permutations: %d\n',n_perm);
if use_half_permutations
fprintf('Equal sample sizes: Use half the number of permutations.\n');
end
fprintf('Exchangeability block/variable: ');
fprintf('%d ',unique(cell2mat(ind_exch_blocks)));
fprintf('\n');
fprintf('# of conditions: %d\n',n_cond);
[Rz, str_permutation_method, nuisance_method] = initializeNuisanceMethod(nuisance_method, xX, c0, interaction_design);
% name of contrast
c_name0 = deblank(xCon.name);
if test_mode
c_name = '';
else
c_name = sprintf('%s (E=%1.1f H=%1.1f %s) ',c_name0, E, H, str_permutation_method);
end
if ~test_mode
% compute unpermuted t/F-map
if voxel_covariate
% check which pinv-method is faster and use that one for all permutations
X = xX.W*xX.X;
tstart1 = tic;
for i=1:20, pX = pinv(X); end
telapsed1 = toc(tstart1);
tstart2 = tic;
for i=1:20, pX = pinv2(X); end
telapsed2 = toc(tstart2);
if 1.1*telapsed2 < telapsed1
pinv_method = 2;
fprintf('Use faster pinv2 function\n');
else
pinv_method = 1;
end
[t0, df2, SmMask] = calc_GLM_voxelwise(Y,xX,SPM.xC(voxel_covariate),xCon,ind_mask,VY(1).dim,C,[],ind_X,pinv_method);
else
[t0, df2, SmMask] = calc_GLM(Y,xX,xCon,ind_mask,VY(1).dim,vFWHM);
end
df1 = size(xCon.c,2);
% transform to z statistic
if convert_to_z
% use faster z-transformation of SPM for T-statistics
if strcmp(xCon.STAT,'T')
t0 = spm_t2z(t0,df2);
else
t0 = palm_gtoz(t0,df1,df2);
end
end
mask_0 = (t0 == 0);
mask_1 = (t0 ~= 0);
mask_P = (t0 > 0);
mask_N = (t0 < 0);
mask_NaN = (mask == 0);
found_P = sum(mask_P(:)) > 0;
found_N = sum(mask_N(:)) > 0;
% remove all NaN and Inf's
t0(isinf(t0) | isnan(t0)) = 0;
% sometimes z-transformation produces neg. values even for F-statistics
if strcmp(xCon.STAT,'F')
t0(t0 < 0) = 0;
end
% get parametric p-values for comparison
tname = sprintf('spm%s_%04d',xCon.STAT,Ic);
tname = fullfile(cwd,[tname file_ext]);
if ~exist(tname,'file') && ~voxel_covariate
spm_contrasts(SPM,Ic);
end
if ~voxel_covariate
Z0 = spm_data_read(tname);
Pt = zeros(size(Z0));
if strcmp(xCon.STAT,'T')
if found_P
Pt(mask_P) = 1-spm_Tcdf(Z0(mask_P),df2);
else
Pt(mask_N) = spm_Tcdf(Z0(mask_N),df2)-1;
end
else
if found_P
Pt(mask_P) = 1-spm_Fcdf(Z0(mask_P),[df1, df2]);
else
Pt(mask_N) = spm_Fcdf(Z0(mask_N),[df1, df2])-1;
end
end
% Check correlation between parametric and non-parametric T/F-values.
% Low correlation points to issues with image mask and we have to use a
cc = corrcoef(Z0(:),t0(:));
mask_shared = Z0 ~= 0;
if cc(1,2) < 0.85 && isempty(job.mask)
% check whether mask size differes and create a shared mask
if sum(Z0(:) ~= 0) ~= sum(t0(:) ~= 0)
fprintf('\nWARNING: Large discrepancy between parametric and non-parametric statistic found (cc=%g) which either points to different image masks or to missing absolute threshold for VBM analysis.\n',cc(1,2));
mask_shared = Z0 ~= 0 & t0 ~=0;
else
fprintf('\nWARNING: Large discrepancy between parametric and non-parametric statistic found (cc=%g) which is likely due to creating parametric statistics in fMRI mode, which slightly handles noise differently.\n',cc(1,2));
end
end
else
mask_shared = ones(size(t0));
end
% get dh for unpermuted map
dh = max(abs(t0(:)))/n_steps_tfce;
% calculate tfce of unpermuted t-map
if mesh_detected
if ~isa(SPM.xVol.G,'gifti')
% check whether path is correct and file exist
if ~exist(SPM.xVol.G,'file')
[pathG,nameG,extG] = spm_fileparts(SPM.xVol.G);
% use new path
if ~isempty(strfind(pathG,'_32k'))
SPM.xVol.G = fullfile(fileparts(which('cat12')),'templates_surfaces_32k',[nameG extG]);
else
SPM.xVol.G = fullfile(fileparts(which('cat12')),'templates_surfaces',[nameG extG]);
end
end
SPM.xVol.G = gifti(SPM.xVol.G);
end
tfce0 = tfce_mesh(SPM.xVol.G.faces, t0, dh, E, H)*dh;
else
% use bilateral filter of t-map to increase SNR, see LISA paper (Lohmann et al. 2018)
if filter_bilateral
var_t0 = var(t0(find(t0~=0 & ~isnan(t0) & ~isinf(t0))));
t0 = double(cat_vol_bilateral(single(t0),2,2,2,2,var_t0));
end
% measure computation time to test whether multi-threading causes issues
% start with single-threading for unpermuted data
tstart = tic;
% only estimate neg. tfce values for non-positive t-values
if found_N
tfce0 = tfceMex_pthread(t0,dh,E,H,1,1)*dh;
else
tfce0 = tfceMex_pthread(t0,dh,E,H,0,1)*dh;
end
telapsed = toc(tstart);
end
% prepare output files
Vt = VY(1);
Vt.dt(1) = 16;
Vt.pinfo(1) = 1;
%---------------------------------------------------------------
% save unpermuted t map
%---------------------------------------------------------------
name = sprintf('%s_%04d',xCon.STAT,Ic);
Vt.fname = fullfile(cwd,[name file_ext]);
Vt.descrip = sprintf('%s %04d %s',xCon.STAT,Ic, str_permutation_method);
Vt = spm_data_hdr_write(Vt);
spm_data_write(Vt,t0);
%---------------------------------------------------------------
% save unpermuted TFCE map
%---------------------------------------------------------------
name = sprintf('TFCE_%04d',Ic);
Vt.fname = fullfile(cwd,[name file_ext]);
Vt.descrip = sprintf('TFCE %04d %s',Ic, str_permutation_method);
Vt = spm_data_hdr_write(Vt);
spm_data_write(Vt,tfce0);
% get largest tfce
tfce0_max = max(tfce0(:));
t0_max = max(t0(:));
tfce0_min = min(tfce0(:));
t0_min = min(t0(:));
% prepare countings
tperm = zeros(size(t));
tfceperm = zeros(size(t));
t_min = [];
t_max = [];
t_max_th = [];
tfce_min = [];
tfce_max = [];
tfce_max_th = [];
end % test_mode
% general initialization
try % use try commands to allow batch mode without graphical output
Fgraph = spm_figure('GetWin','Graphics');
spm_figure('Clear',Fgraph);
figure(Fgraph)
h = axes('position',[0.45 0.95 0.1 0.05],'Units','normalized','Parent',...
Fgraph,'Visible','off');
text(0.5,0.6,c_name,...
'FontSize',spm('FontSize',10),...
'FontWeight','Bold',...
'HorizontalAlignment','Center',...
'VerticalAlignment','middle')
text(0.5,0.25,spm_str_manip(spm_fileparts(job.data{1}),'a80'),...
'FontSize',spm('FontSize',8),...
'HorizontalAlignment','Center',...
'VerticalAlignment','middle')
end
% check that label has correct dimension
sz = size(label);
if sz(1)>sz(2)
label = label';
end
stopStatus = false;
if ~test_mode, tfce_progress('Init',n_perm,'Calculating','Permutations'); end
% update interval for progress bar
progress_step = max([1 round(n_perm/100)]);
% Regression design found where contrast is defined for covariate?
if ~isempty(xX.iC) && all(ismember(ind_X,SPM.xX.iC))
ind_label_gt0 = find(label(ind_data_defined) > 0);
else
ind_label_gt0 = find(label > 0);
end
unique_labels = unique(label(ind_label_gt0));
n_unique_labels = length(unique_labels);
perm = 1;
check_validity = false;
while perm<=n_perm
[permutedResults, stopStatus] = executePermutation(perm, n_perm, xX, label, ind_label, job, SPM, n_data_with_contrast, n_cond, n_unique_labels, ind_label_gt0);
if stopStatus
break;
end
if show_plot
if ~test_mode, tfce_progress('Set',perm,Fgraph); end
drawnow
end
if use_half_permutations
perm = perm + 2;
else
perm = perm + 1;
end
end
processAndSaveResults(permutedResults, SPM, xCon, cwd);
end
function [permutedResults, stopStatus] = executePermutation(perm, n_perm, xX, label, ind_label, job, SPM, n_data_with_contrast, n_cond, n_unique_labels, ind_label_gt0, test_mode);
permutedResults = []; % This should be structured according to what you expect to collect from each permutation
% randomize subject vector
if perm==1 % first permutation is always unpermuted model
if n_cond == 1 % one-sample t-test
rand_label = ones(1,n_data_with_contrast);
label_matrix = rand_label;
else % correlation or Anova
rand_order = ind_label;
rand_order_sorted = rand_order;
label_matrix = rand_order;
end
else
% init permutation and
% check that each permutation is used only once
if n_cond == 1 % one-sample t-test
rand_label = sign(randn(1,n_data_with_contrast));
while any(ismember(label_matrix,rand_label,'rows'))
rand_label = sign(randn(1,n_data_with_contrast));
end
else % correlation or Anova
% permute inside exchangeability blocks only
rand_order = zeros(1,n_data_with_contrast);
rand_order_sorted = zeros(1,n_data_with_contrast);
for k = 1:max(exch_block_labels_data_defined)
ind_block = find(exch_block_labels_data_defined == k);
n_per_block = length(ind_block);
rand_order(ind_block) = ind_label(ind_block(randperm(n_per_block)));
end
% go through defined labels and sort inside
for k=1:n_unique_labels
ind_block = find(label(ind_label_gt0) == unique_labels(k));
rand_order_sorted(ind_block) = sort(rand_order(ind_block));
end
% check whether this permutation was already used
count_trials = 0;
while any(ismember(label_matrix,rand_order_sorted,'rows'))
count_trials = count_trials + 1;
% stop the permutation loop for too many successless trials for finding
% new permutations
if count_trials > 100000
fprintf('Stopped after %d permutations because there were too many successless trials for finding new permutations.\n',perm);
fprintf('Probably there are some missing values for some subjects and the number of maximal permutations was too high.\n');
n_perm = perm; % stop the permutation loop
stopStatus = true;
break
end
for k = 1:max(exch_block_labels_data_defined)
ind_block = find(exch_block_labels_data_defined == k);
n_per_block = length(ind_block);
rand_order(ind_block) = ind_label(ind_block(randperm(n_per_block)));
end
% go through defined labels and sort inside
for k=1:n_unique_labels
ind_block = find(label(ind_label_gt0) == unique_labels(k));
rand_order_sorted(ind_block) = sort(rand_order(ind_block));
end
end
end
end
% create permutation set
Pset = sparse(n_data,n_data);
if n_cond == 1 % one-sample t-test
for k=1:n_data_with_contrast
Pset(ind_label(k),ind_label(k)) = rand_label(k);
end
else % correlation or Anova
for k=1:n_data_with_contrast
Pset(rand_order_sorted(k),ind_label(k)) = 1;
end
end
% add Stop button after 20 iterations
try % use try commands to allow batch mode without graphical output
if perm==21
hStopButton = uicontrol(Fgraph,...
'position',[10 10 70 20],...
'style','toggle',...
'string','Stop',...
'backgroundcolor',[1 .5 .5]); % light-red
end
if perm>=21
stopStatus = get(hStopButton,'value');
end
% check Stop status
if (stopStatus == true)
fprintf('Stopped after %d iterations.\n',perm);
break; % stop the permutation loop
end
end
% change design matrix according to permutation order
% only permute columns, where contrast is defined
Xperm = xX.X;
Xperm_debug = xX.X;
Wperm = xX.W;
switch nuisance_method
case 0 % Draper-Stoneman is permuting X
Xperm(:,ind_X) = Pset*Xperm(:,ind_X);
% if n_cond ~= 1
% Wtmp = Pset*xX.W;
% Wperm(ind_data_defined,ind_data_defined) = Wtmp(ind_data_defined,ind_data_defined);
% end
case 1 % Freedman-Lane is permuting Y
Xperm = xX.X;
case 2 % Smith method is additionally orthogonalizing X with respect to Z
Xperm(:,ind_X) = Pset*Rz*Xperm(:,ind_X);
% if n_cond ~= 1
% Wtmp = Pset*Rz*xX.W;
% Wperm(ind_data_defined,ind_data_defined) = Wtmp(ind_data_defined,ind_data_defined);
% end
end
Xperm_debug(:,ind_X) = Pset*Xperm_debug(:,ind_X);
% correct interaction designs
% # exch_blocks >1 & # cond == 0 & differential contrast
if n_exch_blocks >= 2 && n_cond==0 && ~all(exch_blocks(:))
Xperm2 = Xperm;
Xperm2(:,ind_X) = 0;
for j=1:n_exch_blocks
ind_Xj = find(xX.X(:,ind_X(j)));
Xperm2(ind_Xj,ind_X(j)) = sum(Xperm(ind_Xj,ind_X),2);
end
Xperm = Xperm2;
Xperm_debug2 = Xperm_debug;
Xperm_debug2(:,ind_X) = 0;
for j=1:n_exch_blocks
ind_Xj = find(xX.X(:,ind_X(j)));
Xperm_debug2(ind_Xj,ind_X(j)) = sum(Xperm_debug(ind_Xj,ind_X),2);
end
Xperm_debug = Xperm_debug2;
end
if show_permuted_designmatrix
% scale covariates and nuisance variables to a range 0.8..1
% to properly display these variables with indicated colors
if ~isempty(xX.iC)
val = Xperm_debug(:,xX.iC);
mn = repmat(min(val),length(val),1); mx = repmat(max(val),length(val),1);
val = 0.8 + 0.2*(val-mn)./(mx-mn);
Xperm_debug(:,xX.iC) = val;
end
if ~isempty(xX.iG)
val = Xperm_debug(:,xX.iG);
mn = repmat(min(val),length(val),1); mx = repmat(max(val),length(val),1);
val = 0.8 + 0.2*(val-mn)./(mx-mn);
Xperm_debug(:,xX.iG) = val;
end
if ~isempty(xX.iH) && n_cond==1 % one-sample t-test
val = Xperm_debug(:,xX.iH);
mn = repmat(min(val),length(val),1); mx = repmat(max(val),length(val),1);
val = 0.8 + 0.2*(val-mn)./(mx-mn);
Xperm_debug(:,xX.iH) = val;
end
% use different colors for indicated columns
Xperm_debug(:,xX.iH) = 16*Xperm_debug(:,xX.iH);
Xperm_debug(:,xX.iC) = 24*Xperm_debug(:,xX.iC);
Xperm_debug(:,xX.iB) = 32*Xperm_debug(:,xX.iB);
Xperm_debug(:,xX.iG) = 48*Xperm_debug(:,xX.iG);
if n_cond==1 % one-sample t-test
for j=1:n_data_with_contrast
if rand_label(j) > 0
Xperm_debug(ind_label(j),ind_X) = 60*rand_label(j)*Xperm_debug(ind_label(j),ind_X);
else
Xperm_debug(ind_label(j),ind_X) = 56*rand_label(j)*Xperm_debug(ind_label(j),ind_X);
end
end
else % correlation or Anova
% scale exchangeability blocks also to values 0.8..1
val = Xperm_debug(:,ind_X);
ind0 = (val==0);
mn = repmat(min(val),length(val),1); mx = repmat(max(val),length(val),1);
val = 0.8 + 0.2*(val-mn)./(mx-mn);
% rescue zero entries
val(ind0) = 0;
Xperm_debug(:,ind_X) = 60*val;
end
end
show_plot = 0;
if use_half_permutations
if ~rem(perm,progress_step) || ~rem(perm+1,progress_step)
show_plot = 1;
end
else
if ~rem(perm,progress_step)
show_plot = 1;
end
end
% display permuted design matrix
try
if show_permuted_designmatrix && show_plot
figure(Fgraph);
subplot(2,2,3);
image(Xperm_debug); axis off
title('Permuted design matrix','FontWeight','bold');
% use different colormap for permuted design matrix
cmap = jet(64);
% zero values should be always black
cmap(1,:) = [0 0 0];
colormap(cmap)
% show legend only once
if perm <= progress_step
subplot(2,2,4); axis off
% color-coded legend
y = 1.0;
text(-0.2,y, 'Columns of design matrix: ', 'Color',cmap(1, :),'FontWeight','Bold','FontSize',10); y = y - 0.10;
text(-0.2,y,['Exch. block: ' num2str_short(unique(cell2mat(ind_exch_blocks))')], 'Color',cmap(60,:),'FontWeight','Bold','FontSize',10); y = y - 0.05;
if ~isempty(xX.iH)
text(-0.2,y, ['iH - Indicator variable: ' num2str_short(xX.iH)], 'Color',cmap(16,:),'FontWeight','Bold','FontSize',10);
y = y - 0.05;
end
if ~isempty(xX.iC)
text(-0.2,y, ['iC - Covariate: ' num2str_short(xX.iC)], 'Color',cmap(24,:),'FontWeight','Bold','FontSize',10);
y = y - 0.05;
end
if ~isempty(xX.iB)
text(-0.2,y, ['iB - Block variable: ' num2str_short(xX.iB)], 'Color',cmap(32,:),'FontWeight','Bold','FontSize',10);
y = y - 0.05;
end
if ~isempty(xX.iG)
text(-0.2,y, ['iG - Nuisance variable: ' num2str_short(xX.iG)], 'Color',cmap(48,:),'FontWeight','Bold','FontSize',10);
y = y - 0.05;
end
end
end
end
if ~test_mode
% calculate permuted t-map
if perm == 1
t = t0;
tfce = tfce0;
% prepare null distribution
if save_null_distribution
null_distribution = zeros(size(t));
end
else
xXperm = xX;
xXperm.X = Xperm;
xXperm.W = Wperm;
% Freedman-Lane permutation of data
if nuisance_method == 1
t = calc_GLM(Y*(Pset'*Rz),xXperm,xCon,ind_mask,VY(1).dim,vFWHM,SmMask);
else
if voxel_covariate
t = calc_GLM_voxelwise(Y,xXperm,SPM.xC(voxel_covariate),xCon,ind_mask,VY(1).dim,C,Pset,ind_X,pinv_method);
else
t = calc_GLM(Y,xXperm,xCon,ind_mask,VY(1).dim,vFWHM,SmMask);
end
end
if convert_to_z
% use faster z-transformation of SPM for T-statistics
if strcmp(xCon.STAT,'T')
t(mask_1) = spm_t2z(t(mask_1),df2);
else
t(mask_1) = palm_gtoz(t(mask_1),df1,df2);
end
end
% update null-distribution
if save_null_distribution
null_distribution(mask_1) = null_distribution(mask_1) + t(mask_1);
end
% remove all NaN and Inf's
t(isinf(t) | isnan(t)) = 0;
% use individual dh
dh = max(abs(t(:)))/n_steps_tfce;
% compute tfce
if mesh_detected
tfce = tfce_mesh(SPM.xVol.G.faces, t, dh, E, H)*dh;
else
if filter_bilateral
t = double(cat_vol_bilateral(single(t),2,2,2,2,var_t0));
end
% measure computation time for 1st permutation to test whether multi-threading causes issues
if perm==3 && ~singlethreaded, tstart = tic; end
% only estimate neg. tfce values for non-positive t-values
if min(t(:)) < 0
tfce = tfceMex_pthread(t,dh,E,H,1,singlethreaded)*dh;
else
tfce = tfceMex_pthread(t,dh,E,H,0,singlethreaded)*dh;
end
% if multi-threading takes 3x longer then force single-threading
% because for some unknown reason multi-threading is not working properly
if perm==3 && ~singlethreaded
telapsed_multi = toc(tstart);
if (telapsed_multi > 3*telapsed)
fprintf('Warning: Multi-threading disabled because of run-time issues.\n');
singlethreaded = 1;
end
end
end
end
% use (too liberal) method for estimating maximum statistic from old release
% r184 for compatibility purposes only that was estimating max/min statistics
% only inside pos./neg. effects and not both
if old_method_stat
mask_stat_P = mask_P;
mask_stat_N = mask_N;
else
mask_stat_P = mask_1;
mask_stat_N = mask_1;
end
end % test_mode
% update label_matrix to check for unique permutations
if use_half_permutations
if perm>1
label_matrix = [label_matrix; rand_order_sorted; [rand_order_sorted(label(ind_label) == 2) rand_order_sorted(label(ind_label) == 1)]];
end
if ~test_mode
% maximum statistic
t_max = [t_max max(t(mask_stat_P)) -min(t(mask_stat_N))];
t_min = [t_min min(t(mask_stat_N)) -max(t(mask_stat_P))];
tfce_max = [tfce_max max(tfce(mask_stat_P)) -min(tfce(mask_stat_N))];
tfce_min = [tfce_min min(tfce(mask_stat_N)) -max(tfce(mask_stat_P))];
tperm(mask_P) = tperm(mask_P) + 2*(t(mask_P) >= t0(mask_P));
tperm(mask_N) = tperm(mask_N) - 2*(t(mask_N) <= t0(mask_N));
tfceperm(mask_P) = tfceperm(mask_P) + 2*(tfce(mask_P) >= tfce0(mask_P));
tfceperm(mask_N) = tfceperm(mask_N) - 2*(tfce(mask_N) <= tfce0(mask_N));
end
else
if perm>1
if n_cond == 1 % one-sample t-test
label_matrix = [label_matrix; rand_label];
else
label_matrix = [label_matrix; rand_order_sorted];
end
end
if ~test_mode
% maximum statistic
t_max = [t_max max(t(mask_stat_P))];
t_min = [t_min min(t(mask_stat_N))];
tfce_max = [tfce_max max(tfce(mask_stat_P))];
tfce_min = [tfce_min min(tfce(mask_stat_N))];
tperm(mask_P) = tperm(mask_P) + (t(mask_P) >= t0(mask_P));
tperm(mask_N) = tperm(mask_N) - (t(mask_N) <= t0(mask_N));
tfceperm(mask_P) = tfceperm(mask_P) + (tfce(mask_P) >= tfce0(mask_P));
tfceperm(mask_N) = tfceperm(mask_N) - (tfce(mask_N) <= tfce0(mask_N));
end
end
if ~test_mode
% use cummulated sum to find threshold
stfce_max = sort(tfce_max);
st_max = sort(t_max);
% find corrected thresholds
ind_max = ceil((1-alpha).*length(st_max));
t_max_th = [t_max_th; st_max(ind_max)];
if use_half_permutations
t_max_th = [t_max_th; st_max(ind_max)];
end
ind_max = ceil((1-alpha).*length(stfce_max));
tfce_max_th = [tfce_max_th; stfce_max(ind_max)];
if use_half_permutations
tfce_max_th = [tfce_max_th; stfce_max(ind_max)];
end
% plot thresholds and histograms
try
if show_plot
figure(Fgraph);
axes('position',[0 0 1 0.95],'Parent',Fgraph,'Visible','off');
plot_distribution(stfce_max, tfce_max_th, 'tfce', alpha, col, 1, tfce0_max, tfce0_min);
if ~show_permuted_designmatrix
plot_distribution(st_max, t_max_th, 't-value', alpha, col, 2, t0_max, t0_min);
end
end
end
if numel(job.conspec.n_perm) > 1
if perm > n_perm_break
if isempty(find(tfce0_max > tfce_max_th(50:end,1), 1))
fprintf('No FWE-corrected suprathreshold value after %d permutations found\n', n_perm_break);
perm = n_perm;
end
end
end
save_results = 1;
% wait until 50 permutations are finished and skip that if voxel-wise covariate is used
if ~voxel_covariate && (perm > 50)
% after defined number of permutations check whether maximum value exceed 95% of threshold
if (perm >= stop_if_now_FWEeffects_found) && (tfce0_max < 0.95*stfce_max(ind_max(alpha==0.05)) && -tfce0_min < 0.95*stfce_max(ind_max(alpha==0.05)))
fprintf('Stop estimation because after %d permutations because threshold could not be exceeded.\n',perm);
save_results = 0;
break; % stop the permutation loop
end
end
% after 500 permutations or at n_perm compare uncorrected p-values with permutations with parametric
% p-values to check wheter something went wrong
% use odd numbers to consider parameter use_half_permutations
% skip that check for voxel-wise covariates
if ~voxel_covariate && ((perm == 501) || (perm >= n_perm-1)) && ~check_validity && (found_P || found_N)
% estimate p-values
nPt = tperm/perm;
% check correlation between parametric and non-parametric p-values
% exclude Pt==0.5 and Pt==1 values that can distort masked analysis values
if found_P
cc = corrcoef(nPt(mask_P & Pt ~=0.5 & Pt ~=1 & mask_shared),Pt(mask_P & Pt ~=0.5 & Pt ~=1 & mask_shared));
else
cc = corrcoef(nPt(mask_N & Pt ~=0.5 & Pt ~=1 & mask_shared),Pt(mask_N & Pt ~=0.5 & Pt ~=1 & mask_shared));
end
% check for low correlation between non-parametric and permutation test
% skip check for voxel-wise covariate
if cc(1,2) < 0.85
% check correlation between parametric and non-parametric statistic ofr Smith or Freedman-Lane correction
if nuisance_method > 0
spm('alert!',sprintf('WARNING: Large discrepancy between parametric and non-parametric statistic found! Please try a different method to deal with nuisance parameters.\n'),'',spm('CmdLine'),0);
fprintf('\nWARNING: Large discrepancy between parametric and non-parametric statistic found (cc=%g)! Please try a different method to deal with nuisance parameters.\n',cc(1,2));
else
spm('alert!',sprintf('WARNING: Large discrepancy between parametric and non-parametric statistic found! Probably your design was not correctly recognized.\n'),'',spm('CmdLine'),0);
fprintf('\nWARNING: Large discrepancy between parametric and non-parametric statistic found (cc=%g)! Probably your design was not correctly recognized.\n',cc(1,2));
end
else
fprintf('\nCorrelation between between parametric and non-parametric statistic is cc=%g, which means that your design and optionally your nuisance parameters were correctly recognized.\n',cc(1,2));
end
check_validity = true;
end
end % test_mode
end
function [Rz, str_permutation_method, nuisance_method] = initializeNuisanceMethod(nuisance_method, xX, c0, interaction_design)
[indi, indj] = find(c0~=0);
ind_X = unique(indi)';
% Guttman partioning of design matrix into effects of interest X and nuisance variables Z
X = xX.X(:,ind_X);
ind_Z = [xX.iH xX.iC xX.iB xX.iG];
ind_Z(ind_X) = [];
Z = xX.X(:,ind_Z);
Hz = Z*pinv(Z);
Rz = eye(size(X,1)) - Hz;
% if Hz is zero or Ic is empty then no confounds were found and we can skip the time-consuming
% Freedman-Lane permutation
if (all(~any(Hz)) || isempty(xX.iC)) || all(~any(diff(Hz))) || (interaction_design && numel(xX.iC) == numel(ind_X))
exist_nuisance = false;
else
exist_nuisance = true;
end
if ~exist_nuisance && nuisance_method > 0
fprintf('No nuisance variables were found: Use Draper-Stoneman permutation.\n\n');
nuisance_method = 0;
end
if nuisance_method > 0 && repeated_anova
fprintf('Use Draper-Stoneman permutation for repeated measures Anova.\n\n');
nuisance_method = 0;
end
switch nuisance_method
case 0
str_permutation_method = 'Draper-Stoneman';
case 1
str_permutation_method = 'Freedman-Lane';
case 2
str_permutation_method = 'Smith';
end
end
function [isValid, n_perm, n_perm_break] = initializeAndCheckErrors(job, Ic, SPM, xCon)
% Assume initialization is valid initially
isValid = true;
n_perm = job.conspec.n_perm(1);
if numel(job.conspec.n_perm) > 1
n_perm_break = job.conspec.n_perm(2);
else
n_perm_break = inf; % No break condition if only one permutation count is specified
end
% Example error check
if length(Ic) > 1
fprintf('ERROR: No conjunction allowed.\n');
isValid = false;
return
end
% Insert additional initialization and error checking as needed
end
function [isValid, exch_blocks, n_exch_blocks, is_eoi, F_contrast_multiple_rows, use_half_permutations, c0] = calculateContrastsAndExchangeabilityBlocks(xCon, xX)
% Assume initialization is valid initially
isValid = true;
repeated_anova = ~isempty(xX.iB);
F_contrast_multiple_rows = 0; % Default value
% get contrast and name
c0 = xCon.c;
F_contrast_multiple_rows = 0;
% for F-contrasts if rank is 1 we can use the first row
if strcmp(xCon.STAT,'F')
if rank(c0) == 1
c0 = c0(:,1);
else
F_contrast_multiple_rows = 1;
end
end
[indi, indj] = find(c0~=0);
ind_X = unique(indi)';
xCon.ind_X = ind_X;
% check for contrasts that are defined for columns with subject effects
if ~isempty(xX.iB)
if max(ind_X) > min(xX.iB)
fprintf('ERROR: No contrasts on subjects/block effects allowed.\n');
isValid = false;
return
end
end
% find exchangeability blocks using contrasts without zero values
exch_blocks = c0(ind_X,:);
n_exch_blocks = length(ind_X);
% recognize effects of interest contrast for F-tests
if F_contrast_multiple_rows && size(exch_blocks,2) == n_exch_blocks
is_eoi = all(all(exch_blocks == eye(n_exch_blocks)));
if is_eoi
n_exch_blocks = 1;
end
end
% check for exchangeability blocks and design matrix
if n_exch_blocks == 1
n_cond = length(find(xX.iH==ind_X)); % check whether the contrast is defined at columns for condition effects
else
n_cond = 0;
n_data_cond = [];
for k=1:length(xX.iH)
n_data_cond = [n_data_cond sum(xX.X(:,xX.iH(k)))];
end
% for F-contrast with multiple rows n_cond is always n_exch_blocks
if F_contrast_multiple_rows && length(xX.iH) > 1
n_cond = n_exch_blocks;
elseif F_contrast_multiple_rows && length(xX.iH) == 1
n_cond = 0;
else
for j=1:n_exch_blocks
col_exch_blocks = find(c0==exch_blocks(j));
for k=1:length(col_exch_blocks)
n_cond = n_cond + length(find(xX.iH==col_exch_blocks(k)));
end
end
end
end
use_half_permutations = 0;
% check if sample size is equal for both conditions
if n_cond == 2
try
% repated Anova or F-test don't allow to use only half of the permutions
if repeated_anova || strcmp(xCon.STAT,'F')
use_half_permutations = 0;
elseif sum(n_data_cond(c0==exch_blocks(1))) == sum(n_data_cond(c0==exch_blocks(2)))
use_half_permutations = 1;
end
end
end
ind_exch_blocks = cell(n_exch_blocks,1);
for j=1:n_exch_blocks
if strcmp(xCon.STAT,'T')
ind_exch_blocks{j} = find(c0==exch_blocks(j));
else
ind_exch_blocks{j} = ind_X(j);
end
end
fprintf('\n');
% check design
interaction_design = false;
switch n_cond
case 0 % correlation
label = 1:n_data;
% we have to correct for some F-contrasts (i.e. effects of interest
% with eyes)
if F_contrast_multiple_rows && is_eoi
is_one = find(any(c0'));
for j=1:numel(is_one)
ind_exch_blocks{j} = is_one(j);
end
ind_exch_blocks = ind_exch_blocks';
end
if n_exch_blocks >= 2 && any(diff(exch_blocks(:))) % # exch_blocks >1 & differential contrast
fprintf('Interaction design between two or more regressors found\n')
interaction_design = true;
% remove all entries where contrast is not defined
% this does not work for all data CG 20200829
% label(all(xX.X(:,ind_X)==0,2)) = [];
else
if repeated_anova
fprintf('Repeated Anova with contrast for covariate found\n');
else
fprintf('Multiple regression design found\n');
end
end
case 1 % one-sample t-test
fprintf('One sample t-test found\n');
% use exchangeability blocks for labels
label = zeros(1,n_data);
for j=1:n_exch_blocks
for k=1:length(ind_exch_blocks{j})
label(xX.X(:,ind_exch_blocks{j}(k))~=0) = j;
end
end
otherwise % Anova with at least 2 groups
if repeated_anova
fprintf('Repeated Anova found\n');
else
fprintf('Anova found\n');
end
% use exchangeability blocks for labels
label = zeros(1,n_data);
for j=1:n_exch_blocks
for k=1:length(ind_exch_blocks{j})
label(xX.X(:,ind_exch_blocks{j}(k))~=0) = j;
end
end
end
fprintf('\n')
% get index for label values > 0
ind_label = find(label > 0);
n_data_with_contrast = length(ind_label);
% estimate # of permutations
% Anova/correlation: n_perm = (n1+n2+...+nk)!/(n1!*n2!*...*nk!)
if n_cond ~=1 % Anova/correlation
n_perm_full = factorial(n_data_with_contrast);
single_subject = 0;
for i=1:n_cond
% check whether only a single subject is in one group
if length(find(label == i)) == 1
single_subject = 1;
end
n_perm_full = n_perm_full/factorial(length(find(label == i)));