forked from sseung0703/KD_methods_with_TF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathop_util.py
executable file
·223 lines (181 loc) · 12.6 KB
/
op_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import tensorflow as tf
from tensorflow.python.ops import control_flow_ops
from re import split
def Optimizer_w_Distillation(class_loss, LR, epoch, init_epoch, global_step, Distillation):
with tf.variable_scope('Optimizer_w_Distillation'):
# get variables and update operations
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
teacher_variables = tf.get_collection('Teacher')
variables = list(set(variables)-set(teacher_variables))
# make optimizer w/ learning rate scheduler
optimize = tf.train.MomentumOptimizer(LR, 0.9, use_nesterov=True)
if Distillation is None:
# training main-task
total_loss = class_loss + tf.add_n(tf.losses.get_regularization_losses())
tf.summary.scalar('loss/total_loss', total_loss)
gradients = optimize.compute_gradients(total_loss, var_list = variables)
elif Distillation == 'Soft_logits':
# multi-task learning with alpha
total_loss = tf.add_n(tf.losses.get_regularization_losses()) + class_loss*0.7 + tf.get_collection('dist')[0]*0.3
tf.summary.scalar('loss/total_loss', total_loss)
gradients = optimize.compute_gradients(total_loss, var_list = variables)
elif Distillation in {'AT', 'RKD', 'VID','SVD-PLUS'}:
# simple multi-task learning
total_loss = class_loss + tf.add_n(tf.losses.get_regularization_losses()) + tf.get_collection('dist')[0]
tf.summary.scalar('loss/total_loss', total_loss)
gradients = optimize.compute_gradients(total_loss, var_list = variables)
elif Distillation[:3] == 'KD-':
# multi-task learning w/ distillation gradients clipping
# distillation gradients are clipped by norm of main-task gradients
reg_loss = tf.add_n(tf.losses.get_regularization_losses())
distillation_loss = tf.get_collection('dist')[0]
# tf.logging.info(distillation_loss.get_shape())
total_loss = class_loss + reg_loss + distillation_loss
tf.summary.scalar('loss/total_loss', total_loss)
tf.summary.scalar('loss/distillation_loss', distillation_loss)
gradients = optimize.compute_gradients(class_loss, var_list = variables)
gradient_wdecay = optimize.compute_gradients(reg_loss, var_list = variables)
gradient_dist = optimize.compute_gradients(distillation_loss, var_list = variables)
with tf.variable_scope('clip_grad'):
for i, (gc, gw, gd) in enumerate(zip(gradients,gradient_wdecay,gradient_dist)):
gw = 0. if gw[0] is None else gw[0]
if gd[0] != None:
norm = tf.sqrt(tf.reduce_sum(tf.square(gc[0])))*sigmoid(epoch, 0)
gradients[i] = (gc[0] + gw + tf.clip_by_norm(gd[0], norm), gc[1])
elif gc[0] != None:
gradients[i] = (gc[0] + gw, gc[1])
if Distillation[-3:] == 'SVP':
gradient_dist += optimize.compute_gradients(tf.add_n(tf.get_collection('basis_loss')),
var_list = tf.get_collection('basises'))
# merge update operators and make train operator
update_ops.append(optimize.apply_gradients(gradients, global_step=global_step))
update_op = tf.group(*update_ops)
train_op = control_flow_ops.with_dependencies([update_op], total_loss, name='train_op')
return train_op
def Optimizer_w_Initializer(class_loss, LR, epoch, init_epoch, global_step):
with tf.variable_scope('Optimizer_w_Distillation'):
# get variables and update operations
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
teacher_variables = tf.get_collection('Teacher')
variables = list(set(variables)-set(teacher_variables))
# make optimizer w/ learning rate scheduler
optimize = tf.train.MomentumOptimizer(LR, 0.9, use_nesterov=True)
# initialization and fine-tuning
# in initialization phase, weight decay have to be turn-off which is not trained by distillation
reg_loss = tf.add_n(tf.losses.get_regularization_losses())
distillation_loss = tf.get_collection('dist')[0]
total_loss = class_loss + reg_loss
tf.summary.scalar('loss/total_loss', total_loss)
gradients = optimize.compute_gradients(total_loss, var_list = variables)
gradient_dist = optimize.compute_gradients(distillation_loss, var_list = variables)
gradient_wdecay = optimize.compute_gradients(reg_loss, var_list = variables)
with tf.variable_scope('clip_grad'):
for i, (gw, gd) in enumerate(zip(gradient_wdecay, gradient_dist)):
if gd[0] is not None:
gradient_dist[i] = (gw[0] + gd[0], gd[1])
# merge update operators and make train operator
update_ops.append(optimize.apply_gradients(gradients, global_step=global_step))
update_op = tf.group(*update_ops)
train_op = control_flow_ops.with_dependencies([update_op], total_loss, name='train_op')
update_ops_dist = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
update_ops_dist.append(optimize.apply_gradients(gradient_dist, global_step=global_step))
update_op_dist = tf.group(*update_ops_dist)
train_op_dist = control_flow_ops.with_dependencies([update_op_dist], distillation_loss, name='train_op_dist')
return train_op, train_op_dist
def Optimizer_w_DML(class_loss, LR, epoch, init_epoch, global_step):
with tf.variable_scope('Optimizer_w_Distillation'):
# get variables and update operations
teacher_variables = [v for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if split('/',v.name)[0] == 'Teacher']
teacher_update_ops = [u for u in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if split('/',u.name)[0] == 'Teacher']
teacher_reg_loss = tf.add_n([l for l in tf.losses.get_regularization_losses() if split('/',l.name)[0] == 'Teacher'])
student_variables = [v for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if split('/',v.name)[0] == 'Student']
student_update_ops = [u for u in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if split('/',u.name)[0] == 'Student']
student_reg_loss = tf.add_n([l for l in tf.losses.get_regularization_losses() if split('/',l.name)[0] == 'Student'])
optimize = tf.train.MomentumOptimizer(LR, 0.9, use_nesterov=True)
teacher_loss = tf.get_collection('teacher_class_loss')[0] + teacher_reg_loss + tf.get_collection('dist')[0]
student_loss = class_loss + student_reg_loss + tf.get_collection('dist')[0]
tf.summary.scalar('loss/total_loss', student_loss)
gradients_teacher = optimize.compute_gradients(teacher_loss, var_list = teacher_variables)
gradients_student = optimize.compute_gradients(student_loss, var_list = student_variables)
# merge update operators and make train operator
teacher_update_ops.append(optimize.apply_gradients(gradients_teacher))
teacher_update_op = tf.group(*teacher_update_ops)
teacher_train_op = control_flow_ops.with_dependencies([teacher_update_op], teacher_loss, name='teacher_train_op')
student_update_ops.append(optimize.apply_gradients(gradients_student, global_step=global_step))
student_update_op = tf.group(*student_update_ops)
student_train_op = control_flow_ops.with_dependencies([student_update_op], student_loss, name='student_train_op')
return teacher_train_op, student_train_op
def Optimizer_w_FT(class_loss, LR, epoch, init_epoch, global_step):
with tf.variable_scope('Optimizer_w_Distillation'):
# get variables and update operations
variables_teacher = tf.get_collection('Teacher')
variables_para = tf.get_collection('Para')
variables = list(set(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))-set(variables_teacher)-set(variables_para))
reg_loss = tf.add_n(tf.losses.get_regularization_losses())
distillation_loss = tf.add_n(tf.get_collection('dist'))*5e2
total_loss = distillation_loss + reg_loss + class_loss
tf.summary.scalar('loss/total_loss', total_loss)
tf.summary.scalar('loss/distillation_loss', distillation_loss)
optimize = tf.train.MomentumOptimizer(LR, 0.9, use_nesterov=True)
gradients = optimize.compute_gradients(total_loss, var_list = variables)
# merge update operators and make train operator
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
update_ops.append(optimize.apply_gradients(gradients, global_step=global_step))
update_op = tf.group(*update_ops)
train_op = control_flow_ops.with_dependencies([update_op], total_loss, name='train_op')
para_loss = tf.add_n(tf.get_collection('Para_loss'))
for v in variables_para:
if split('/',v.name)[-1][0] == 'w':
para_loss += tf.reduce_sum(tf.square(v))*5e-4
gradients_para = optimize.compute_gradients(para_loss, var_list = variables_para)
update_ops_para = [optimize.apply_gradients(gradients_para, global_step=global_step)]
update_ops_para = tf.group(*update_ops_para)
train_op_para = control_flow_ops.with_dependencies([update_ops_para], para_loss, name='train_op_para')
return train_op, train_op_para
def Optimizer_w_MHGD(class_loss, LR, epoch, init_epoch, global_step):
with tf.variable_scope('Optimizer_w_Distillation'):
# get variables and update operations
variables_mha = tf.get_collection('MHA')
variables = [v for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if split('/',v.name)[0] == 'Student']
reg_loss = tf.add_n(tf.losses.get_regularization_losses())
distillation_loss = tf.get_collection('dist')[0]
total_loss = distillation_loss + reg_loss + class_loss
tf.summary.scalar('loss/total_loss', total_loss)
tf.summary.scalar('loss/distillation_loss', distillation_loss)
optimize = tf.train.MomentumOptimizer(LR, 0.9, use_nesterov=True)
gradients = optimize.compute_gradients(class_loss, var_list = variables)
gradients_wdecay = optimize.compute_gradients(reg_loss, var_list = variables)
gradients_dist = optimize.compute_gradients(distillation_loss, var_list = variables)
with tf.variable_scope('clip_grad'):
for i, (gc, gw, gd) in enumerate(zip(gradients,gradients_wdecay,gradients_dist)):
gw = 0. if gw[0] is None else gw[0]
if gd[0] != None:
norm = tf.sqrt(tf.reduce_sum(tf.square(gc[0])))*sigmoid(epoch-init_epoch, 0)
gd = tf.clip_by_norm(gd[0], norm)
gradients[i] = (gw + gc[0] + gd, gc[1])
elif gc[0] != None:
gradients[i] = (gw + gc[0] , gc[1])
# merge update operators and make train operator
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
update_ops_mha = [u for u in update_ops if split('/',u.name)[0] == 'Distillation']
update_ops = [u for u in update_ops if split('/',u.name)[0] == 'Student']
update_ops.append(optimize.apply_gradients(gradients, global_step=global_step))
update_op = tf.group(*update_ops)
train_op = control_flow_ops.with_dependencies([update_op], total_loss, name='train_op')
mha_loss = tf.add_n(tf.get_collection('MHA_loss'))
tf.summary.scalar('loss/mha_loss', mha_loss)
for v in variables_mha:
if v.name.split('/')[-1][0] in {'g','w','b'}:
mha_loss += tf.reduce_sum(tf.square(v))*5e-4
gradients_mha = optimize.compute_gradients(mha_loss, var_list = variables_mha)
update_ops_mha.append(optimize.apply_gradients(gradients_mha, global_step=global_step))
update_op_mha = tf.group(*update_ops_mha)
train_op_mha = control_flow_ops.with_dependencies([update_op_mha], mha_loss, name='train_op_mha')
return train_op, train_op_mha
def sigmoid(x, k, d = 1):
s = 1/(1+tf.exp(-(x-k)/d))
s = tf.cond(tf.greater(s,1-1e-8),
lambda : 1.0, lambda : s)
return s