-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_finetuning.py
115 lines (86 loc) · 4.39 KB
/
evaluate_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 5 10:58:28 2022
@author: cyrilvallez
"""
# =============================================================================
# Quick python script to evaluate finetuning performances
# =============================================================================
import numpy as np
import os
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
import seaborn as sns
import pandas as pd
import extractor
from finetuning.simclr import SimCLR
from clustering import metrics
from clustering import tools
def density_plot(epochs, metric, ylabel, filename):
N_epochs = [epochs[i]*np.ones(len(metric[i]), dtype=int) \
for i in range(len(metric))]
N_epochs = np.concatenate(N_epochs)
metric = np.concatenate(metric)
palette = ['tab:red' if i == 0 else 'tab:blue' for i in range(len(epochs))]
frame = pd.DataFrame({'Epoch': N_epochs, 'metric': metric})
plt.figure()
sns.violinplot(x='Epoch', y='metric', data=frame, palette=palette)
plt.ylabel(ylabel)
legend_elements = [Patch(facecolor='tab:blue', label='Finetuning'),
Patch(facecolor='tab:red', label='Original')]
plt.legend(handles=legend_elements, loc='best')
plt.savefig(filename, bbox_inches='tight')
transforms = extractor.SIMCLR_TRANSFORMS
dataset = extractor.create_dataset('all_memes', transforms)
epochs = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
# Paths where the finetuned models have been saved
paths = [f'cartoons_finetuning_models/2022-06-30_20:03:28/epoch_{a}.pth' for a in epochs]
all_diameters = []
all_centroids = []
all_separations = []
all_dispersions = []
all_centroid_to_centroid = []
all_signal_noise_ratio1 = []
all_signal_noise_ratio2 = []
for epoch, path in zip(epochs, paths):
if epoch == 0:
features, mapping = tools.get_features('clean_dataset', 'SimCLR v2 ResNet50 2x')
else:
# Load model
model = SimCLR.load_encoder(path)
# Give the model a name
name = f'SimCLR_finetuned_epoch_{epoch}'
# Extract and save features
extractor.extract_and_save_neural(model, dataset, name=name)
# Load the features of only the perceptually similar memes
features, mapping = tools.get_features('clean_dataset', name)
assignments = tools.compute_assignment_groundtruth(mapping)
diameters = metrics.cluster_diameters(features, assignments, quantile=1.)
all_diameters.append(diameters)
centroids = metrics.cluster_centroids(features, assignments)
all_centroids.append(centroids)
all_separations.append(metrics.outside_cluster_separation(features, assignments,
centroids))
all_dispersions.append(metrics.inside_cluster_dispersion(features, assignments,
centroids))
all_centroid_to_centroid.append(metrics.mean_centroid_to_centroid(features, assignments,
centroids))
all_signal_noise_ratio1.append(metrics.diameters_over_separations(features, assignments,
diameters, centroids))
all_signal_noise_ratio2.append(metrics.dispersion_over_centroid_to_centroid(features, assignments,
centroids))
folder = 'Finetuning_eval_fig/'
os.makedirs(folder, exist_ok=True)
density_plot(epochs, all_diameters, filename=folder + 'diameters.pdf',
ylabel='Diameters')
density_plot(epochs, all_separations, filename=folder + 'separations.pdf',
ylabel='Min centroid to outside points distance')
density_plot(epochs, all_dispersions, filename=folder + 'dispersions.pdf',
ylabel='Mean centroid to inside points distance')
density_plot(epochs, all_centroid_to_centroid, filename=folder + 'centroid_to_centroid.pdf',
ylabel='Mean centroid to centroid distance')
density_plot(epochs, all_signal_noise_ratio1, filename=folder + 'SN_ratio1.pdf',
ylabel='Diameter over min centroid to outside points distance')
density_plot(epochs, all_signal_noise_ratio2, filename=folder + 'SN_ratio2.pdf',
ylabel='Mean centroid to inside points distance over centroid to centroid distance')