Skip to content

Releases: DLR-RM/stable-baselines3

Bug fixes, better image support and last release before v1.0

27 Feb 19:31
b2c94a6
Compare
Choose a tag to compare

Breaking Changes:

  • evaluate_policy now returns rewards/episode lengths from a Monitor wrapper if one is present,
    this allows to return the unnormalized reward in the case of Atari games for instance.
  • Renamed common.vec_env.is_wrapped to common.vec_env.is_vecenv_wrapped to avoid confusion
    with the new is_wrapped() helper
  • Renamed _get_data() to _get_constructor_parameters() for policies (this affects independent saving/loading of policies)
  • Removed n_episodes_rollout and merged it with train_freq, which now accepts a tuple (frequency, unit):
  • replay_buffer in collect_rollout is no more optional
  # SB3 < 0.11.0
  # model = SAC("MlpPolicy", env, n_episodes_rollout=1, train_freq=-1)
  # SB3 >= 0.11.0:
  model = SAC("MlpPolicy", env, train_freq=(1, "episode"))

New Features:

  • Add support for VecFrameStack to stack on first or last observation dimension, along with
    automatic check for image spaces.
  • VecFrameStack now has a channels_order argument to tell if observations should be stacked
    on the first or last observation dimension (originally always stacked on last).
  • Added common.env_util.is_wrapped and common.env_util.unwrap_wrapper functions for checking/unwrapping
    an environment for specific wrapper.
  • Added env_is_wrapped() method for VecEnv to check if its environments are wrapped
    with given Gym wrappers.
  • Added monitor_kwargs parameter to make_vec_env and make_atari_env
  • Wrap the environments automatically with a Monitor wrapper when possible.
  • EvalCallback now logs the success rate when available (is_success must be present in the info dict)
  • Added new wrappers to log images and matplotlib figures to tensorboard. (@zampanteymedio)
  • Add support for text records to Logger. (@lorenz-h)

Bug Fixes:

  • Fixed bug where code added VecTranspose on channel-first image environments (thanks @qxcv)
  • Fixed DQN predict method when using single gym.Env with deterministic=False
  • Fixed bug that the arguments order of explained_variance() in ppo.py and a2c.py is not correct (@thisray)
  • Fixed bug where full HerReplayBuffer leads to an index error. (@megan-klaiber)
  • Fixed bug where replay buffer could not be saved if it was too big (> 4 Gb) for python<3.8 (thanks @hn2)
  • Added informative PPO construction error in edge-case scenario where n_steps * n_envs = 1 (size of rollout buffer),
    which otherwise causes downstream breaking errors in training (@decodyng)
  • Fixed discrete observation space support when using multiple envs with A2C/PPO (thanks @ardabbour)
  • Fixed a bug for TD3 delayed update (the update was off-by-one and not delayed when train_freq=1)
  • Fixed numpy warning (replaced np.bool with bool)
  • Fixed a bug where VecNormalize was not normalizing the terminal observation
  • Fixed a bug where VecTranspose was not transposing the terminal observation
  • Fixed a bug where the terminal observation stored in the replay buffer was not the right one for off-policy algorithms
  • Fixed a bug where action_noise was not used when using HER (thanks @ShangqunYu)
  • Fixed a bug where train_freq was not properly converted when loading a saved model

Others:

  • Add more issue templates
  • Add signatures to callable type annotations (@ernestum)
  • Improve error message in NatureCNN
  • Added checks for supported action spaces to improve clarity of error messages for the user
  • Renamed variables in the train() method of SAC, TD3 and DQN to match SB3-Contrib.
  • Updated docker base image to Ubuntu 18.04
  • Set tensorboard min version to 2.2.0 (earlier version are apparently not working with PyTorch)
  • Added warning for PPO when n_steps * n_envs is not a multiple of batch_size (last mini-batch truncated) (@decodyng)
  • Removed some warnings in the tests

Documentation:

  • Updated algorithm table
  • Minor docstring improvements regarding rollout (@stheid)
  • Fix migration doc for A2C (epsilon parameter)
  • Fix clip_range docstring
  • Fix duplicated parameter in EvalCallback docstring (thanks @tfederico)
  • Added example of learning rate schedule
  • Added SUMO-RL as example project (@LucasAlegre)
  • Fix docstring of classes in atari_wrappers.py which were inside the constructor (@LucasAlegre)
  • Added SB3-Contrib page
  • Fix bug in the example code of DQN (@AptX395)
  • Add example on how to access the tensorboard summary writer directly. (@lorenz-h)
  • Updated migration guide
  • Updated custom policy doc (separate policy architecture recommended)
  • Added a note about OpenCV headless version
  • Corrected typo on documentation (@mschweizer)
  • Provide the environment when loading the model in the examples (@lorepieri8)

HER with online and offline sampling, bug fixes for features extraction

28 Oct 12:05
b418879
Compare
Choose a tag to compare

Breaking Changes

  • Warning: Renamed common.cmd_util to common.env_util for clarity (affects make_vec_env and make_atari_env functions)

New Features

  • Allow custom actor/critic network architectures using net_arch=dict(qf=[400, 300], pi=[64, 64]) for off-policy algorithms (SAC, TD3, DDPG)
  • Added Hindsight Experience Replay HER. (@megan-klaiber)
  • VecNormalize now supports gym.spaces.Dict observation spaces
  • Support logging videos to Tensorboard (@SwamyDev)
  • Added share_features_extractor argument to SAC and TD3 policies

Bug Fixes

  • Fix GAE computation for on-policy algorithms (off-by one for the last value) (thanks @Wovchena)
  • Fixed potential issue when loading a different environment
  • Fix ignoring the exclude parameter when recording logs using json, csv or log as logging format (@SwamyDev)
  • Make make_vec_env support the env_kwargs argument when using an env ID str (@ManifoldFR)
  • Fix model creation initializing CUDA even when device="cpu" is provided
  • Fix check_env not checking if the env has a Dict actionspace before calling _check_nan (@wmmc88)
  • Update the check for spaces unsupported by Stable Baselines 3 to include checks on the action space (@wmmc88)
  • Fixed feature extractor bug for target network where the same net was shared instead
    of being separate. This bug affects SAC, DDPG and TD3 when using CnnPolicy (or custom feature extractor)
  • Fixed a bug when passing an environment when loading a saved model with a CnnPolicy, the passed env was not wrapped properly
    (the bug was introduced when implementing HER so it should not be present in previous versions)

Others

  • Improved typing coverage
  • Improved error messages for unsupported spaces
  • Added .vscode to the gitignore

Documentation

  • Added first draft of migration guide
  • Added intro to imitation library (@shwang)
  • Enabled doc for CnnPolicies
  • Added advanced saving and loading example
  • Added base doc for exporting models
  • Added example for getting and setting model parameters

Bug fixes, get/set parameters and improved docs

04 Oct 15:29
a10e3ae
Compare
Choose a tag to compare

Breaking Changes:

  • Removed device keyword argument of policies; use policy.to(device) instead. (@qxcv)
  • Rename BaseClass.get_torch_variables -> BaseClass._get_torch_save_params and
    BaseClass.excluded_save_params -> BaseClass._excluded_save_params
  • Renamed saved items tensors to pytorch_variables for clarity
  • make_atari_env, make_vec_env and set_random_seed must be imported with (and not directly from stable_baselines3.common):
from stable_baselines3.common.cmd_util import make_atari_env, make_vec_env
from stable_baselines3.common.utils import set_random_seed

New Features:

  • Added unwrap_vec_wrapper() to common.vec_env to extract VecEnvWrapper if needed
  • Added StopTrainingOnMaxEpisodes to callback collection (@xicocaio)
  • Added device keyword argument to BaseAlgorithm.load() (@liorcohen5)
  • Callbacks have access to rollout collection locals as in SB2. (@partiallytyped)
  • Added get_parameters and set_parameters for accessing/setting parameters of the agent
  • Added actor/critic loss logging for TD3. (@mloo3)

Bug Fixes:

  • Fixed a bug where the environment was reset twice when using evaluate_policy
  • Fix logging of clip_fraction in PPO (@diditforlulz273)
  • Fixed a bug where cuda support was wrongly checked when passing the GPU index, e.g., device="cuda:0" (@liorcohen5)
  • Fixed a bug when the random seed was not properly set on cuda when passing the GPU index

Others:

  • Improve typing coverage of the VecEnv
  • Fix type annotation of make_vec_env (@ManifoldFR)
  • Removed AlreadySteppingError and NotSteppingError that were not used
  • Fixed typos in SAC and TD3
  • Reorganized functions for clarity in BaseClass (save/load functions close to each other, private
    functions at top)
  • Clarified docstrings on what is saved and loaded to/from files
  • Simplified save_to_zip_file function by removing duplicate code
  • Store library version along with the saved models
  • DQN loss is now logged

Documentation:

  • Added StopTrainingOnMaxEpisodes details and example (@xicocaio)
  • Updated custom policy section (added custom feature extractor example)
  • Re-enable sphinx_autodoc_typehints
  • Updated doc style for type hints and remove duplicated type hints

Added DQN and DDPG, bug fixes and performance matching for Atari games

03 Aug 20:42
cceffd5
Compare
Choose a tag to compare

Breaking Changes:

  • AtariWrapper and other Atari wrappers were updated to match SB2 ones
  • save_replay_buffer now receives as argument the file path instead of the folder path (@tirafesi)
  • Refactored Critic class for TD3 and SAC, it is now called ContinuousCritic
    and has an additional parameter n_critics
  • SAC and TD3 now accept an arbitrary number of critics (e.g. policy_kwargs=dict(n_critics=3))
    instead of only 2 previously

New Features:

  • Added DQN Algorithm (@Artemis-Skade)
  • Buffer dtype is now set according to action and observation spaces for ReplayBuffer
  • Added warning when allocation of a buffer may exceed the available memory of the system
    when psutil is available
  • Saving models now automatically creates the necessary folders and raises appropriate warnings (@partiallytyped)
  • Refactored opening paths for saving and loading to use strings, pathlib or io.BufferedIOBase (@partiallytyped)
  • Added DDPG algorithm as a special case of TD3.
  • Introduced BaseModel abstract parent for BasePolicy, which critics inherit from.

Bug Fixes:

  • Fixed a bug in the close() method of SubprocVecEnv, causing wrappers further down in the wrapper stack to not be closed. (@NeoExtended)
  • Fix target for updating q values in SAC: the entropy term was not conditioned by terminals states
  • Use cloudpickle.load instead of pickle.load in CloudpickleWrapper. (@shwang)
  • Fixed a bug with orthogonal initialization when bias=False in custom policy (@rk37)
  • Fixed approximate entropy calculation in PPO and A2C. (@AndyShih12)
  • Fixed DQN target network sharing feature extractor with the main network.
  • Fixed storing correct dones in on-policy algorithm rollout collection. (@AndyShih12)
  • Fixed number of filters in final convolutional layer in NatureCNN to match original implementation.

Others:

  • Refactored off-policy algorithm to share the same .learn() method
  • Split the collect_rollout() method for off-policy algorithms
  • Added _on_step() for off-policy base class
  • Optimized replay buffer size by removing the need of next_observations numpy array
  • Optimized polyak updates (1.5-1.95 speedup) through inplace operations (@partiallytyped)
  • Switch to black codestyle and added make format, make check-codestyle and commit-checks
  • Ignored errors from newer pytype version
  • Added a check when using gSDE
  • Removed codacy dependency from Dockerfile
  • Added common.sb2_compat.RMSpropTFLike optimizer, which corresponds closer to the implementation of RMSprop from Tensorflow.

Documentation:

  • Updated notebook links
  • Fixed a typo in the section of Enjoy a Trained Agent, in RL Baselines3 Zoo README. (@blurLake)
  • Added Unity reacher to the projects page (@koulakis)
  • Added PyBullet colab notebook
  • Fixed typo in PPO example code (@joeljosephjin)
  • Fixed typo in custom policy doc (@RaphaelWag)

Hotfix for PPO/A2C + gSDE, internal refactoring and bug fixes

10 Jun 17:01
494ebfd
Compare
Choose a tag to compare

Breaking Changes:

  • render() method of VecEnvs now only accept one argument: mode

  • Created new file common/torch_layers.py, similar to SB refactoring

    • Contains all PyTorch network layer definitions and feature extractors: MlpExtractor, create_mlp, NatureCNN
  • Renamed BaseRLModel to BaseAlgorithm (along with offpolicy and onpolicy variants)

  • Moved on-policy and off-policy base algorithms to common/on_policy_algorithm.py and common/off_policy_algorithm.py, respectively.

  • Moved PPOPolicy to ActorCriticPolicy in common/policies.py

  • Moved PPO (algorithm class) into OnPolicyAlgorithm (common/on_policy_algorithm.py), to be shared with A2C

  • Moved following functions from BaseAlgorithm:

    • _load_from_file to load_from_zip_file (save_util.py)
    • _save_to_file_zip to save_to_zip_file (save_util.py)
    • safe_mean to safe_mean (utils.py)
    • check_env to check_for_correct_spaces (utils.py. Renamed to avoid confusion with environment checker tools)
  • Moved static function _is_vectorized_observation from common/policies.py to common/utils.py under name is_vectorized_observation.

  • Removed {save,load}_running_average functions of VecNormalize in favor of load/save.

  • Removed use_gae parameter from RolloutBuffer.compute_returns_and_advantage.

Bug Fixes:

  • Fixed render() method for VecEnvs
  • Fixed seed() method for SubprocVecEnv
  • Fixed loading on GPU for testing when using gSDE and deterministic=False
  • Fixed register_policy to allow re-registering same policy for same sub-class (i.e. assign same value to same key).
  • Fixed a bug where the gradient was passed when using gSDE with PPO/A2C, this does not affect SAC

Others:

  • Re-enable unsafe fork start method in the tests (was causing a deadlock with tensorflow)
  • Added a test for seeding SubprocVecEnv and rendering
  • Fixed reference in NatureCNN (pointed to older version with different network architecture)
  • Fixed comments saying "CxWxH" instead of "CxHxW" (same style as in torch docs / commonly used)
  • Added bit further comments on register/getting policies ("MlpPolicy", "CnnPolicy").
  • Renamed progress (value from 1 in start of training to 0 in end) to progress_remaining.
  • Added policies.py files for A2C/PPO, which define MlpPolicy/CnnPolicy (renamed ActorCriticPolicies).
  • Added some missing tests for VecNormalize, VecCheckNan and PPO.

Documentation:

  • Added a paragraph on "MlpPolicy"/"CnnPolicy" and policy naming scheme under "Developer Guide"
  • Fixed second-level listing in changelog

Tensorboard support, refactored logger

01 Jun 11:13
403fff5
Compare
Choose a tag to compare
Pre-release

Breaking Changes:

  • Remove State-Dependent Exploration (SDE) support for TD3
  • Methods were renamed in the logger:
    • logkv -> record, writekvs -> write, writeseq -> write_sequence,
    • logkvs -> record_dict, dumpkvs -> dump,
    • getkvs -> get_log_dict, logkv_mean -> record_mean,

New Features:

  • Added env checker (Sync with Stable Baselines)
  • Added VecCheckNan and VecVideoRecorder (Sync with Stable Baselines)
  • Added determinism tests
  • Added cmd_util and atari_wrappers
  • Added support for MultiDiscrete and MultiBinary observation spaces (@rolandgvc)
  • Added MultiCategorical and Bernoulli distributions for PPO/A2C (@rolandgvc)
  • Added support for logging to tensorboard (@rolandgvc)
  • Added VectorizedActionNoise for continuous vectorized environments (@partiallytyped)
  • Log evaluation in the EvalCallback using the logger

Bug Fixes:

  • Fixed a bug that prevented model trained on cpu to be loaded on gpu
  • Fixed version number that had a new line included
  • Fixed weird seg fault in docker image due to FakeImageEnv by reducing screen size
  • Fixed sde_sample_freq that was not taken into account for SAC
  • Pass logger module to BaseCallback otherwise they cannot write in the one used by the algorithms

Others:

  • Renamed to Stable-Baseline3
  • Added Dockerfile
  • Sync VecEnvs with Stable-Baselines
  • Update requirement: gym>=0.17
  • Added .readthedoc.yml file
  • Added flake8 and make lint command
  • Added Github workflow
  • Added warning when passing both train_freq and n_episodes_rollout to Off-Policy Algorithms

Documentation:

  • Added most documentation (adapted from Stable-Baselines)
  • Added link to CONTRIBUTING.md in the README (@kinalmehta)
  • Added gSDE project and update docstrings accordingly
  • Fix TD3 example code block