forked from eric-yyjau/pytorch-superpoint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain4.py
143 lines (111 loc) · 4.65 KB
/
train4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""Training script
This is the training script for superpoint detector and descriptor.
Author: You-Yi Jau, Rui Zhu
Date: 2019/12/12
"""
import argparse
import yaml
import os
import logging
import torch
import torch.optim
import torch.utils.data
from tensorboardX import SummaryWriter
# from utils.utils import tensor2array, save_checkpoint, load_checkpoint, save_path_formatter
from utils.utils import getWriterPath
from settings import EXPER_PATH
## loaders: data, model, pretrained model
from utils.loader import dataLoader, modelLoader, pretrainedLoader
from utils.logging import *
# from models.model_wrap import SuperPointFrontend_torch, PointTracker
###### util functions ######
def datasize(train_loader, config, tag='train'):
logging.info('== %s split size %d in %d batches'%\
(tag, len(train_loader)*config['model']['batch_size'], len(train_loader)))
pass
from utils.loader import get_save_path
###### util functions end ######
###### train script ######
def train_base(config, output_dir, args):
return train_joint(config, output_dir, args)
pass
# def train_joint_dsac():
# pass
def train_joint(config, output_dir, args):
assert 'train_iter' in config
# config
# from utils.utils import pltImshow
# from utils.utils import saveImg
torch.set_default_tensor_type(torch.FloatTensor)
task = config['data']['dataset']
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info('train on device: %s', device)
with open(os.path.join(output_dir, 'config.yml'), 'w') as f:
yaml.dump(config, f, default_flow_style=False)
# writer = SummaryWriter(getWriterPath(task=args.command, date=True))
writer = SummaryWriter(getWriterPath(task=args.command,
exper_name=args.exper_name, date=True))
## save data
save_path = get_save_path(output_dir)
# data loading
# data = dataLoader(config, dataset='syn', warp_input=True)
data = dataLoader(config, dataset=task, warp_input=True)
train_loader, val_loader = data['train_loader'], data['val_loader']
datasize(train_loader, config, tag='train')
datasize(val_loader, config, tag='val')
# init the training agent using config file
# from train_model_frontend import Train_model_frontend
from utils.loader import get_module
train_model_frontend = get_module('', config['front_end_model'])
train_agent = train_model_frontend(config, save_path=save_path, device=device)
# writer from tensorboard
train_agent.writer = writer
# feed the data into the agent
train_agent.train_loader = train_loader
train_agent.val_loader = val_loader
# load model initiates the model and load the pretrained model (if any)
train_agent.loadModel()
train_agent.dataParallel()
try:
# train function takes care of training and evaluation
train_agent.train()
except KeyboardInterrupt:
print ("press ctrl + c, save model!")
train_agent.saveModel()
pass
if __name__ == '__main__':
# global var
torch.set_default_tensor_type(torch.FloatTensor)
logging.basicConfig(format='[%(asctime)s %(levelname)s] %(message)s',
datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO)
# add parser
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest='command')
# Training command
p_train = subparsers.add_parser('train_base')
p_train.add_argument('config', type=str)
p_train.add_argument('exper_name', type=str)
p_train.add_argument('--eval', action='store_true')
p_train.add_argument('--debug', action='store_true', default=False,
help='turn on debuging mode')
p_train.set_defaults(func=train_base)
# Training command
p_train = subparsers.add_parser('train_joint')
p_train.add_argument('config', type=str)
p_train.add_argument('exper_name', type=str)
p_train.add_argument('--eval', action='store_true')
p_train.add_argument('--debug', action='store_true', default=False,
help='turn on debuging mode')
p_train.set_defaults(func=train_joint)
args = parser.parse_args()
if args.debug:
logging.basicConfig(format='[%(asctime)s %(levelname)s] %(message)s',
datefmt='%m/%d/%Y %H:%M:%S', level=logging.DEBUG)
with open(args.config, 'r') as f:
config = yaml.safe_load(f)
# EXPER_PATH from settings.py
output_dir = os.path.join(EXPER_PATH, args.exper_name)
os.makedirs(output_dir, exist_ok=True)
# with capture_outputs(os.path.join(output_dir, 'log')):
logging.info('Running command {}'.format(args.command.upper()))
args.func(config, output_dir, args)