This repository has been archived by the owner on Jun 15, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathpose_detector.py
579 lines (481 loc) · 26 KB
/
pose_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import cv2
import math
import time
import argparse
import numpy as np
from scipy.ndimage.filters import gaussian_filter
import chainer
from chainer import cuda, serializers, functions as F
from entity import params, JointType
from models.CocoPoseNet import CocoPoseNet
class PoseDetector(object):
def __init__(self, arch=None, weights_file=None, model=None, device=-1, precise=False):
self.arch = arch
self.precise = precise
if model is not None:
self.model = model
else:
print('Loading the model...')
self.model = params['archs'][arch]()
if weights_file:
serializers.load_npz(weights_file, self.model)
self.device = device
if self.device >= 0:
cuda.get_device_from_id(device).use()
self.model.to_gpu()
# create gaussian filter
self.gaussian_kernel = self.create_gaussian_kernel(params['gaussian_sigma'], params['ksize'])[None, None]
self.gaussian_kernel = cuda.to_gpu(self.gaussian_kernel)
# compute gaussian filter
def create_gaussian_kernel(self, sigma=1, ksize=5):
center = int(ksize / 2)
grid_x = np.tile(np.arange(ksize), (ksize, 1))
grid_y = grid_x.transpose().copy()
grid_d2 = (grid_x - center) ** 2 + (grid_y - center) ** 2
kernel = 1/(sigma**2 * 2 * np.pi) * np.exp(-0.5 * grid_d2 / sigma**2)
return kernel.astype('f')
def pad_image(self, img, stride, pad_value):
h, w, _ = img.shape
pad = [0] * 2
pad[0] = (stride - (h % stride)) % stride # down
pad[1] = (stride - (w % stride)) % stride # right
img_padded = np.zeros((h+pad[0], w+pad[1], 3), 'uint8') + pad_value
img_padded[:h, :w, :] = img.copy()
return img_padded, pad
def compute_optimal_size(self, orig_img, img_size, stride=8):
"""画像の幅と高さがstrideの倍数になるように調節する"""
orig_img_h, orig_img_w, _ = orig_img.shape
aspect = orig_img_h / orig_img_w
if orig_img_h < orig_img_w:
img_h = img_size
img_w = np.round(img_size / aspect).astype(int)
surplus = img_w % stride
if surplus != 0:
img_w += stride - surplus
else:
img_w = img_size
img_h = np.round(img_size * aspect).astype(int)
surplus = img_h % stride
if surplus != 0:
img_h += stride - surplus
return (img_w, img_h)
def compute_peaks_from_heatmaps(self, heatmaps):
"""all_peaks: shape = [N, 5], column = (jointtype, x, y, score, index)"""
heatmaps = heatmaps[:-1]
xp = cuda.get_array_module(heatmaps)
if xp == np:
all_peaks = []
peak_counter = 0
for i , heatmap in enumerate(heatmaps):
heatmap = gaussian_filter(heatmap, sigma=params['gaussian_sigma'])
map_left = xp.zeros(heatmap.shape)
map_right = xp.zeros(heatmap.shape)
map_top = xp.zeros(heatmap.shape)
map_bottom = xp.zeros(heatmap.shape)
map_left[1:, :] = heatmap[:-1, :]
map_right[:-1, :] = heatmap[1:, :]
map_top[:, 1:] = heatmap[:, :-1]
map_bottom[:, :-1] = heatmap[:, 1:]
peaks_binary = xp.logical_and.reduce((
heatmap > params['heatmap_peak_thresh'],
heatmap > map_left,
heatmap > map_right,
heatmap > map_top,
heatmap > map_bottom,
))
peaks = zip(xp.nonzero(peaks_binary)[1], xp.nonzero(peaks_binary)[0]) # [(x, y), (x, y)...]のpeak座標配列
peaks_with_score = [(i,) + peak_pos + (heatmap[peak_pos[1], peak_pos[0]],) for peak_pos in peaks]
peaks_id = range(peak_counter, peak_counter + len(peaks_with_score))
peaks_with_score_and_id = [peaks_with_score[i] + (peaks_id[i], ) for i in range(len(peaks_id))]
peak_counter += len(peaks_with_score_and_id)
all_peaks.append(peaks_with_score_and_id)
all_peaks = xp.array([peak for peaks_each_category in all_peaks for peak in peaks_each_category])
else:
heatmaps = F.convolution_2d(heatmaps[:, None], self.gaussian_kernel,
stride=1, pad=int(params['ksize']/2)).data.squeeze()
left_heatmaps = xp.zeros(heatmaps.shape)
right_heatmaps = xp.zeros(heatmaps.shape)
top_heatmaps = xp.zeros(heatmaps.shape)
bottom_heatmaps = xp.zeros(heatmaps.shape)
left_heatmaps[:, 1:, :] = heatmaps[:, :-1, :]
right_heatmaps[:, :-1, :] = heatmaps[:, 1:, :]
top_heatmaps[:, :, 1:] = heatmaps[:, :, :-1]
bottom_heatmaps[:, :, :-1] = heatmaps[:, :, 1:]
peaks_binary = xp.logical_and(heatmaps > params['heatmap_peak_thresh'], heatmaps >= right_heatmaps)
peaks_binary = xp.logical_and(peaks_binary, heatmaps >= top_heatmaps)
peaks_binary = xp.logical_and(peaks_binary, heatmaps >= left_heatmaps)
peaks_binary = xp.logical_and(peaks_binary, heatmaps >= bottom_heatmaps)
peak_c, peak_y, peak_x = xp.nonzero(peaks_binary)
peak_score = heatmaps[peak_c, peak_y, peak_x]
all_peaks = xp.vstack((peak_c, peak_x, peak_y, peak_score)).transpose()
all_peaks = xp.hstack((all_peaks, xp.arange(len(all_peaks)).reshape(-1, 1)))
all_peaks = all_peaks.get()
return all_peaks
def compute_candidate_connections(self, paf, cand_a, cand_b, img_len, params):
candidate_connections = []
for joint_a in cand_a:
for joint_b in cand_b: # jointは(x, y)座標
vector = joint_b[:2] - joint_a[:2]
norm = np.linalg.norm(vector)
if norm == 0:
continue
ys = np.linspace(joint_a[1], joint_b[1], num=params['n_integ_points'])
xs = np.linspace(joint_a[0], joint_b[0], num=params['n_integ_points'])
integ_points = np.stack([ys, xs]).T.round().astype('i') # joint_aとjoint_bの2点間を結ぶ線分上の座標点 [[x1, y1], [x2, y2]...]
paf_in_edge = np.hstack([paf[0][np.hsplit(integ_points, 2)], paf[1][np.hsplit(integ_points, 2)]])
unit_vector = vector / norm
inner_products = np.dot(paf_in_edge, unit_vector)
integ_value = inner_products.sum() / len(inner_products)
# vectorの長さが基準値以上の時にペナルティを与える
integ_value_with_dist_prior = integ_value + min(params['limb_length_ratio'] * img_len / norm - params['length_penalty_value'], 0)
n_valid_points = sum(inner_products > params['inner_product_thresh'])
if n_valid_points > params['n_integ_points_thresh'] and integ_value_with_dist_prior > 0:
candidate_connections.append([int(joint_a[3]), int(joint_b[3]), integ_value_with_dist_prior])
candidate_connections = sorted(candidate_connections, key=lambda x: x[2], reverse=True)
return candidate_connections
def compute_connections(self, pafs, all_peaks, img_len, params):
all_connections = []
for i in range(len(params['limbs_point'])):
paf_index = [i*2, i*2 + 1]
paf = pafs[paf_index]
limb_point = params['limbs_point'][i]
cand_a = all_peaks[all_peaks[:, 0] == limb_point[0]][:, 1:]
cand_b = all_peaks[all_peaks[:, 0] == limb_point[1]][:, 1:]
if len(cand_a) > 0 and len(cand_b) > 0:
candidate_connections = self.compute_candidate_connections(paf, cand_a, cand_b, img_len, params)
connections = np.zeros((0, 3))
for index_a, index_b, score in candidate_connections:
if index_a not in connections[:, 0] and index_b not in connections[:, 1]:
connections = np.vstack([connections, [index_a, index_b, score]])
if len(connections) >= min(len(cand_a), len(cand_b)):
break
all_connections.append(connections)
else:
all_connections.append(np.zeros((0, 3)))
return all_connections
def grouping_key_points(self, all_connections, candidate_peaks, params):
subsets = -1 * np.ones((0, 20))
for l, connections in enumerate(all_connections):
joint_a, joint_b = params['limbs_point'][l]
for ind_a, ind_b, score in connections[:, :3]:
ind_a, ind_b = int(ind_a), int(ind_b)
joint_found_cnt = 0
joint_found_subset_index = [-1, -1]
for subset_ind, subset in enumerate(subsets):
# そのconnectionのjointをもってるsubsetがいる場合
if subset[joint_a] == ind_a or subset[joint_b] == ind_b:
joint_found_subset_index[joint_found_cnt] = subset_ind
joint_found_cnt += 1
if joint_found_cnt == 1: # そのconnectionのどちらかのjointをsubsetが持っている場合
found_subset = subsets[joint_found_subset_index[0]]
# 肩->耳のconnectionの組合せを除いて、始点の一致しか起こり得ない。肩->耳の場合、終点が一致していた場合は、既に顔のbone検出済みなので処理不要。
if found_subset[joint_b] != ind_b:
found_subset[joint_b] = ind_b
found_subset[-1] += 1 # increment joint count
found_subset[-2] += candidate_peaks[ind_b, 3] + score # joint bのscoreとconnectionの積分値を加算
elif joint_found_cnt == 2: # subset1にjoint1が、subset2にjoint2がある場合(肩->耳のconnectionの組合せした起こり得ない)
# print('limb {}: 2 subsets have any joint'.format(l))
found_subset_1 = subsets[joint_found_subset_index[0]]
found_subset_2 = subsets[joint_found_subset_index[1]]
membership = ((found_subset_1 >= 0).astype(int) + (found_subset_2 >= 0).astype(int))[:-2]
if not np.any(membership == 2): # merge two subsets when no duplication
found_subset_1[:-2] += found_subset_2[:-2] + 1 # default is -1
found_subset_1[-2:] += found_subset_2[-2:]
found_subset_1[-2:] += score # connectionの積分値のみ加算(jointのscoreはmerge時に全て加算済み)
subsets = np.delete(subsets, joint_found_subset_index[1], axis=0)
else:
if found_subset_1[joint_a] == -1:
found_subset_1[joint_a] = ind_a
found_subset_1[-1] += 1
found_subset_1[-2] += candidate_peaks[ind_a, 3] + score
elif found_subset_1[joint_b] == -1:
found_subset_1[joint_b] = ind_b
found_subset_1[-1] += 1
found_subset_1[-2] += candidate_peaks[ind_b, 3] + score
if found_subset_2[joint_a] == -1:
found_subset_2[joint_a] = ind_a
found_subset_2[-1] += 1
found_subset_2[-2] += candidate_peaks[ind_a, 3] + score
elif found_subset_2[joint_b] == -1:
found_subset_2[joint_b] = ind_b
found_subset_2[-1] += 1
found_subset_2[-2] += candidate_peaks[ind_b, 3] + score
elif joint_found_cnt == 0 and l != 9 and l != 13: # 新規subset作成, 肩耳のconnectionは新規group対象外
row = -1 * np.ones(20)
row[joint_a] = ind_a
row[joint_b] = ind_b
row[-1] = 2
row[-2] = sum(candidate_peaks[[ind_a, ind_b], 3]) + score
subsets = np.vstack([subsets, row])
elif joint_found_cnt >= 3:
pass
# delete low score subsets
keep = np.logical_and(subsets[:, -1] >= params['n_subset_limbs_thresh'], subsets[:, -2]/subsets[:, -1] >= params['subset_score_thresh'])
subsets = subsets[keep]
return subsets
def subsets_to_pose_array(self, subsets, all_peaks):
person_pose_array = []
for subset in subsets:
joints = []
for joint_index in subset[:18].astype('i'):
if joint_index >= 0:
joint = all_peaks[joint_index][1:3].tolist()
joint.append(2)
joints.append(joint)
else:
joints.append([0, 0, 0])
person_pose_array.append(np.array(joints))
person_pose_array = np.array(person_pose_array)
return person_pose_array
def compute_limbs_length(self, joints):
limbs = []
limbs_len = np.zeros(len(params["limbs_point"]))
for i, joint_indices in enumerate(params["limbs_point"]):
if joints[joint_indices[0]] is not None and joints[joint_indices[1]] is not None:
limbs.append([joints[joint_indices[0]], joints[joint_indices[1]]])
limbs_len[i] = np.linalg.norm(joints[joint_indices[1]][:-1] - joints[joint_indices[0]][:-1])
else:
limbs.append(None)
return limbs_len, limbs
def compute_unit_length(self, limbs_len):
unit_length = 0
base_limbs_len = limbs_len[[14, 3, 0, 13, 9]] # (鼻首、首左腰、首右腰、肩左耳、肩右耳)の長さの比率(このどれかが存在すればこれを優先的に単位長さの計算する)
non_zero_limbs_len = base_limbs_len > 0
if len(np.nonzero(non_zero_limbs_len)[0]) > 0:
limbs_len_ratio = np.array([0.85, 2.2, 2.2, 0.85, 0.85])
unit_length = np.sum(base_limbs_len[non_zero_limbs_len] / limbs_len_ratio[non_zero_limbs_len]) / len(np.nonzero(non_zero_limbs_len)[0])
else:
limbs_len_ratio = np.array([2.2, 1.7, 1.7, 2.2, 1.7, 1.7, 0.6, 0.93, 0.65, 0.85, 0.6, 0.93, 0.65, 0.85, 1, 0.2, 0.2, 0.25, 0.25])
non_zero_limbs_len = limbs_len > 0
unit_length = np.sum(limbs_len[non_zero_limbs_len] / limbs_len_ratio[non_zero_limbs_len]) / len(np.nonzero(non_zero_limbs_len)[0])
return unit_length
def get_unit_length(self, person_pose):
limbs_length, limbs = self.compute_limbs_length(person_pose)
unit_length = self.compute_unit_length(limbs_length)
return unit_length
def crop_around_keypoint(self, img, keypoint, crop_size):
x, y = keypoint
left = int(x - crop_size)
top = int(y - crop_size)
right = int(x + crop_size)
bottom = int(y + crop_size)
bbox = (left, top, right, bottom)
cropped_img = self.crop_image(img, bbox)
return cropped_img, bbox
def crop_person(self, img, person_pose, unit_length):
top_joint_priority = [4, 5, 6, 12, 16, 7, 13, 17, 8, 10, 14, 9, 11, 15, 2, 3, 0, 1, sys.maxsize]
bottom_joint_priority = [9, 6, 7, 14, 16, 8, 15, 17, 4, 2, 0, 5, 3, 1, 10, 11, 12, 13, sys.maxsize]
top_joint_index = len(top_joint_priority) - 1
bottom_joint_index = len(bottom_joint_priority) - 1
left_joint_index = 0
right_joint_index = 0
top_pos = sys.maxsize
bottom_pos = 0
left_pos = sys.maxsize
right_pos = 0
for i, joint in enumerate(person_pose):
if joint[2] > 0:
if top_joint_priority[i] < top_joint_priority[top_joint_index]:
top_joint_index = i
elif bottom_joint_priority[i] < bottom_joint_priority[bottom_joint_index]:
bottom_joint_index = i
if joint[1] < top_pos:
top_pos = joint[1]
elif joint[1] > bottom_pos:
bottom_pos = joint[1]
if joint[0] < left_pos:
left_pos = joint[0]
left_joint_index = i
elif joint[0] > right_pos:
right_pos = joint[0]
right_joint_index = i
top_padding_radio = [0.9, 1.9, 1.9, 2.9, 3.7, 1.9, 2.9, 3.7, 4.0, 5.5, 7.0, 4.0, 5.5, 7.0, 0.7, 0.8, 0.7, 0.8]
bottom_padding_radio = [6.9, 5.9, 5.9, 4.9, 4.1, 5.9, 4.9, 4.1, 3.8, 2.3, 0.8, 3.8, 2.3, 0.8, 7.1, 7.0, 7.1, 7.0]
left = (left_pos - 0.3 * unit_length).astype(int)
right = (right_pos + 0.3 * unit_length).astype(int)
top = (top_pos - top_padding_radio[top_joint_index] * unit_length).astype(int)
bottom = (bottom_pos + bottom_padding_radio[bottom_joint_index] * unit_length).astype(int)
bbox = (left, top, right, bottom)
cropped_img = self.crop_image(img, bbox)
return cropped_img, bbox
def crop_face(self, img, person_pose, unit_length):
face_size = unit_length
face_img = None
bbox = None
# if have nose
if person_pose[JointType.Nose][2] > 0:
nose_pos = person_pose[JointType.Nose][:2]
face_top = int(nose_pos[1] - face_size * 1.2)
face_bottom = int(nose_pos[1] + face_size * 0.8)
face_left = int(nose_pos[0] - face_size)
face_right = int(nose_pos[0] + face_size)
bbox = (face_left, face_top, face_right, face_bottom)
face_img = self.crop_image(img, bbox)
return face_img, bbox
def crop_hands(self, img, person_pose, unit_length):
hands = {
"left": None,
"right": None
}
if person_pose[JointType.LeftHand][2] > 0:
crop_center = person_pose[JointType.LeftHand][:-1]
if person_pose[JointType.LeftElbow][2] > 0:
direction_vec = person_pose[JointType.LeftHand][:-1] - person_pose[JointType.LeftElbow][:-1]
crop_center += (0.3 * direction_vec).astype(crop_center.dtype)
hand_img, bbox = self.crop_around_keypoint(img, crop_center, unit_length * 0.95)
hands["left"] = {
"img": hand_img,
"bbox": bbox
}
if person_pose[JointType.RightHand][2] > 0:
crop_center = person_pose[JointType.RightHand][:-1]
if person_pose[JointType.RightElbow][2] > 0:
direction_vec = person_pose[JointType.RightHand][:-1] - person_pose[JointType.RightElbow][:-1]
crop_center += (0.3 * direction_vec).astype(crop_center.dtype)
hand_img, bbox = self.crop_around_keypoint(img, crop_center, unit_length * 0.95)
hands["right"] = {
"img": hand_img,
"bbox": bbox
}
return hands
def crop_image(self, img, bbox):
left, top, right, bottom = bbox
img_h, img_w, img_ch = img.shape
box_h = bottom - top
box_w = right - left
crop_left = max(0, left)
crop_top = max(0, top)
crop_right = min(img_w, right)
crop_bottom = min(img_h, bottom)
crop_h = crop_bottom - crop_top
crop_w = crop_right - crop_left
cropped_img = img[crop_top:crop_bottom, crop_left:crop_right]
bias_x = bias_y = 0
if left < crop_left:
bias_x = crop_left - left
if top < crop_top:
bias_y = crop_top - top
# pad
padded_img = np.zeros((box_h, box_w, img_ch), dtype=np.uint8)
padded_img[bias_y:bias_y+crop_h, bias_x:bias_x+crop_w] = cropped_img
return padded_img
def preprocess(self, img):
x_data = img.astype('f')
x_data /= 255
x_data -= 0.5
x_data = x_data.transpose(2, 0, 1)[None]
return x_data
def detect_precise(self, orig_img):
orig_img_h, orig_img_w, _ = orig_img.shape
pafs_sum = 0
heatmaps_sum = 0
interpolation = cv2.INTER_CUBIC
for scale in params['inference_scales']:
multiplier = scale * params['inference_img_size'] / min(orig_img.shape[:2])
img = cv2.resize(orig_img, (math.ceil(orig_img_w*multiplier), math.ceil(orig_img_h*multiplier)), interpolation=interpolation)
bbox = (params['inference_img_size'], max(params['inference_img_size'], img.shape[1]))
padded_img, pad = self.pad_image(img, params['downscale'], (104, 117, 123))
x_data = self.preprocess(padded_img)
if self.device >= 0:
x_data = cuda.to_gpu(x_data)
h1s, h2s = self.model(x_data)
tmp_paf = h1s[-1][0].data.transpose(1, 2, 0)
tmp_heatmap = h2s[-1][0].data.transpose(1, 2, 0)
if self.device >= 0:
tmp_paf = cuda.to_cpu(tmp_paf)
tmp_heatmap = cuda.to_cpu(tmp_heatmap)
p_h, p_w = padded_img.shape[:2]
tmp_paf = cv2.resize(tmp_paf, (p_w, p_h), interpolation=interpolation)
tmp_paf = tmp_paf[:p_h-pad[0], :p_w-pad[1], :]
pafs_sum += cv2.resize(tmp_paf, (orig_img_w, orig_img_h), interpolation=interpolation)
tmp_heatmap = cv2.resize(tmp_heatmap, (0, 0), fx=params['downscale'], fy=params['downscale'], interpolation=interpolation)
tmp_heatmap = tmp_heatmap[:padded_img.shape[0]-pad[0], :padded_img.shape[1]-pad[1], :]
heatmaps_sum += cv2.resize(tmp_heatmap, (orig_img_w, orig_img_h), interpolation=interpolation)
self.pafs = (pafs_sum / len(params['inference_scales'])).transpose(2, 0, 1)
self.heatmaps = (heatmaps_sum / len(params['inference_scales'])).transpose(2, 0, 1)
if self.device >= 0:
self.pafs = cuda.to_cpu(self.pafs)
self.all_peaks = self.compute_peaks_from_heatmaps(self.heatmaps)
if len(self.all_peaks) == 0:
return np.empty((0, len(JointType), 3)), np.empty(0)
all_connections = self.compute_connections(self.pafs, self.all_peaks, orig_img_w, params)
subsets = self.grouping_key_points(all_connections, self.all_peaks, params)
poses = self.subsets_to_pose_array(subsets, self.all_peaks)
scores = subsets[:, -2]
return poses, scores
def __call__(self, orig_img):
orig_img = orig_img.copy()
if self.precise:
return self.detect_precise(orig_img)
orig_img_h, orig_img_w, _ = orig_img.shape
input_w, input_h = self.compute_optimal_size(orig_img, params['inference_img_size'])
map_w, map_h = self.compute_optimal_size(orig_img, params['heatmap_size'])
resized_image = cv2.resize(orig_img, (input_w, input_h))
x_data = self.preprocess(resized_image)
if self.device >= 0:
x_data = cuda.to_gpu(x_data)
h1s, h2s = self.model(x_data)
pafs = F.resize_images(h1s[-1], (map_h, map_w)).data[0]
heatmaps = F.resize_images(h2s[-1], (map_h, map_w)).data[0]
if self.device >= 0:
pafs = pafs.get()
cuda.get_device_from_id(self.device).synchronize()
all_peaks = self.compute_peaks_from_heatmaps(heatmaps)
if len(all_peaks) == 0:
return np.empty((0, len(JointType), 3)), np.empty(0)
all_connections = self.compute_connections(pafs, all_peaks, map_w, params)
subsets = self.grouping_key_points(all_connections, all_peaks, params)
all_peaks[:, 1] *= orig_img_w / map_w
all_peaks[:, 2] *= orig_img_h / map_h
poses = self.subsets_to_pose_array(subsets, all_peaks)
scores = subsets[:, -2]
return poses, scores
def draw_person_pose(orig_img, poses):
if len(poses) == 0:
return orig_img
limb_colors = [
[0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255],
[0, 85, 255], [255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0.],
[255, 0, 85], [170, 255, 0], [85, 255, 0], [170, 0, 255.], [0, 0, 255],
[0, 0, 255], [255, 0, 255], [170, 0, 255], [255, 0, 170],
]
joint_colors = [
[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0],
[85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
[0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255],
[255, 0, 255], [255, 0, 170], [255, 0, 85]]
canvas = orig_img.copy()
# limbs
for pose in poses.round().astype('i'):
for i, (limb, color) in enumerate(zip(params['limbs_point'], limb_colors)):
if i != 9 and i != 13: # don't show ear-shoulder connection
limb_ind = np.array(limb)
if np.all(pose[limb_ind][:, 2] != 0):
joint1, joint2 = pose[limb_ind][:, :2]
cv2.line(canvas, tuple(joint1), tuple(joint2), color, 2)
# joints
for pose in poses.round().astype('i'):
for i, ((x, y, v), color) in enumerate(zip(pose, joint_colors)):
if v != 0:
cv2.circle(canvas, (x, y), 3, color, -1)
return canvas
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Pose detector')
parser.add_argument('arch', choices=params['archs'].keys(), default='posenet', help='Model architecture')
parser.add_argument('weights', help='weights file path')
parser.add_argument('--img', '-i', default=None, help='image file path')
parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)')
parser.add_argument('--precise', action='store_true', help='do precise inference')
args = parser.parse_args()
chainer.config.enable_backprop = False
chainer.config.train = False
# load model
pose_detector = PoseDetector(args.arch, args.weights, device=args.gpu, precise=args.precise)
# read image
img = cv2.imread(args.img)
# inference
poses, _ = pose_detector(img)
# draw and save image
img = draw_person_pose(img, poses)
print('Saving result into result.png...')
cv2.imwrite('result.png', img)