forked from viveikjha/aperture_photometry
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_fwhm.py
54 lines (45 loc) · 1.5 KB
/
find_fwhm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
import math
from scipy import optimize
from astropy.io import fits
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
def gaussian(height, center_x, center_y, width_x, width_y):
"""Returns a gaussian function with the given parameters"""
width_x = float(width_x)
width_y = float(width_y)
return lambda x,y: height*np.exp(-(((center_x-x)/width_x)**2+((center_y-y)/width_y)**2)/2)
def moments(data):
"""Returns (height, x, y, width_x, width_y)
the gaussian parameters of a 2D distribution by calculating its
moments """
total = data.sum()
X, Y = np.indices(data.shape)
x = (X*data).sum()/total
y = (Y*data).sum()/total
col = data[:, int(y)]
width_x = np.sqrt(np.abs((np.arange(col.size)-y)**2*col).sum()/col.sum())
row = data[int(x), :]
width_y = np.sqrt(np.abs((np.arange(row.size)-x)**2*row).sum()/row.sum())
height = data.max()
print(width_x,width_y,height)
return height, x, y, width_x, width_y
def fitgaussian(data):
"""Returns (height, x, y, width_x, width_y)
the gaussian parameters of a 2D distribution found by a fit"""
params = moments(data)
errorfunction = lambda p: np.ravel(gaussian(*p)(*np.indices(data.shape)) -data)
p, success = optimize.leastsq(errorfunction, params)
return p
data = fits.open('bf.fits')
image=data[0].data
psf = image[1200:1550,1500:1850]
print(np.shape(psf))
result = moments(psf)
print (result[3],result[4])
print ("seeing = ", (result[3]+result[4])/2.0*0.0439)
fig=plt.figure()
ax=plt.plot(psf)
plt.show()
#ax.plot3D(psf)
# 1.35"