-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchatbot.py
334 lines (288 loc) · 12.8 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import logging
import os
import random
import sys
import time
from io import open
import numpy as np
import tensorflow as tf
import config
import data_utils
from model import ChatBotModel
logging.basicConfig(
format='%(asctime)s : %(levelname)s : %(message)s',
level=logging.INFO
)
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
def _get_random_bucket(train_buckets_scale):
"""
Get a random bucket from which to choose a training sample.
"""
rand = random.random()
return min([i for i in range(len(train_buckets_scale))
if train_buckets_scale[i] > rand])
def _assert_lengths(encoder_size, decoder_size, encoder_inputs,
decoder_inputs, decoder_masks):
"""
Assert that the encoder inputs, decoder inputs, and decoder masks are
of the expected lengths.
"""
if len(encoder_inputs) != encoder_size:
raise ValueError("Encoder length must be equal to the one in bucket,"
" {:d} != {:d}.".format(len(encoder_inputs), encoder_size))
if len(decoder_inputs) != decoder_size:
raise ValueError("Decoder length must be equal to the one in bucket,"
" {:d} != {:d}.".format(len(decoder_inputs), decoder_size))
if len(decoder_masks) != decoder_size:
raise ValueError("Weights length must be equal to the one in bucket,"
" {:d} != {:d}.".format(len(decoder_masks), decoder_size))
def run_step(sess, model, encoder_inputs, decoder_inputs,
decoder_masks, bucket_id, forward_only):
"""
Run one step in training.
Args:
sess: tensorflow.Session
model: ChatBotModel
encoder_inputs: batch_encoder_inputs
decoder_inputs: batch_decoder_inputs
decoder_masks: weights
bucket_id: index of the chosen bucket.
forward_only: boolean value to decide whether a backward path should be created
forward_only is set to True when you just want to evaluate on the test set,
or when you want to the bot to be in chat mode.
Returns:
gradient norm, loss, outputs.
"""
encoder_size, decoder_size = config.BUCKETS[bucket_id]
_assert_lengths(encoder_size, decoder_size,
encoder_inputs, decoder_inputs, decoder_masks)
# input feed: encoder inputs, decoder inputs, target_weights, as provided.
input_feed = {}
for step in range(encoder_size):
input_feed[model.encoder_inputs[step].name] = encoder_inputs[step]
for step in range(decoder_size):
input_feed[model.decoder_inputs[step].name] = decoder_inputs[step]
input_feed[model.decoder_masks[step].name] = decoder_masks[step]
last_target = model.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([model.batch_size], dtype=np.int32)
# output feed: depends on whether we do a backward step or not.
if not forward_only:
output_feed = [model.train_ops[bucket_id], # update op that does SGD.
model.gradient_norms[bucket_id], # gradient norm.
model.losses[bucket_id]] # loss for this batch.
else:
output_feed = [model.losses[bucket_id]] # loss for this batch.
for step in range(decoder_size): # output logits.
output_feed.append(model.outputs[bucket_id][step])
outputs = sess.run(output_feed, input_feed)
if not forward_only:
return outputs[1], outputs[2], None # Gradient norm, loss, no outputs.
else:
return None, outputs[0], outputs[1:] # No gradient norm, loss, outputs.
def _get_buckets():
"""
Load the dataset into buckets based on their lengths.
train_buckets_scale is the interval that"ll help us
choose a random bucket later on.
"""
# test set
test_buckets = data_utils.load_data("test_ids.enc", "test_ids.dec")
# training set
data_buckets = data_utils.load_data("train_ids.enc", "train_ids.dec")
# Count the number of conversation pairs for each bucket.
train_bucket_sizes = [len(data_buckets[b]) for b in range(len(config.BUCKETS))]
print("Number of samples in each bucket:\n", train_bucket_sizes)
# Total number of conversation pairs.
train_total_size = sum(train_bucket_sizes)
# list of increasing numbers from 0 to 1 that we"ll use to select a bucket.
train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size
for i in range(len(train_bucket_sizes))]
print("Bucket scale:\n", train_buckets_scale)
return test_buckets, data_buckets, train_buckets_scale
def _get_skip_step(iteration):
""" How many steps should the model train before it saves all the weights. """
if iteration < 100:
return 30
return 100
def check_restore_parameters(sess, saver):
""" Restore the previously trained parameters if there are any. """
ckpt = tf.train.get_checkpoint_state(os.path.dirname(
config.CPT_PATH + "/checkpoint"))
if ckpt and ckpt.model_checkpoint_path:
logging.info("Loading parameters for the Chatbot...")
saver.restore(sess, ckpt.model_checkpoint_path)
else:
logging.info("Initializing fresh parameters for the Chatbot...")
def _eval_test_set(sess, model, test_buckets):
"""
Evaluate on the test set.
"""
for bucket_id in range(len(config.BUCKETS)):
if len(test_buckets[bucket_id]) == 0:
print(" Test: empty bucket {:d}".format(bucket_id))
continue
start = time.time()
encoder_inputs, decoder_inputs, decoder_masks = data_utils.get_batch(
test_buckets[bucket_id],
bucket_id,
batch_size=config.BATCH_SIZE)
_, step_loss, _ = run_step(sess, model, encoder_inputs, decoder_inputs,
decoder_masks, bucket_id, True)
logging.info("Test bucket {:d}: loss {:.4f}, time {:.4f}".format(
bucket_id, step_loss, time.time() - start))
def train():
"""
Train the bot.
"""
# test_buckets, data_buckets: <type "list">:
# [[[[Context], [Response]], ], ]]
# test_buckets[0]: first bucket
# test_buckets[0][0]: first pair of the first bucket
# test_buckets[0][0][0], test_buckets[0][0][1]: Context and response
# test_buckets[0][0][0][0]: word index of the first words
# train_buckets_scale: list of increasing numbers from 0 to 1 that
# we"ll use to select a bucket. len(train_buckets_scale) = len(BUCKETS)
test_buckets, data_buckets, train_buckets_scale = _get_buckets()
# in train mode, we need to create the backward path, so forward_only is False
model = ChatBotModel(False, config.BATCH_SIZE)
# build graph
model.build_graph()
saver = tf.train.Saver()
with tf.Session() as sess:
print("Running session...")
sess.run(tf.global_variables_initializer())
check_restore_parameters(sess, saver)
iteration = model.global_step.eval()
total_loss = 0
logging.info("Training...")
try:
while True:
skip_step = _get_skip_step(iteration)
bucket_id = _get_random_bucket(train_buckets_scale)
encoder_inputs, decoder_inputs, decoder_masks = data_utils.get_batch(
data_buckets[bucket_id], bucket_id,
batch_size=config.BATCH_SIZE)
start = time.time()
_, step_loss, _ = run_step(
sess, model, encoder_inputs, decoder_inputs,
decoder_masks, bucket_id, False)
total_loss += step_loss
iteration += 1
if iteration % skip_step == 0:
logging.info("Training @ iter {:d}: loss {:.4f}, time {:.4f}".format(
iteration, total_loss / skip_step, time.time() - start))
total_loss = 0
saver.save(sess, os.path.join(config.CPT_PATH, "chatbot"),
global_step=model.global_step)
if iteration % (10 * skip_step) == 0:
logging.info("Testing...")
# Run evals on development set and print their loss
_eval_test_set(sess, model, test_buckets)
sys.stdout.flush()
except KeyboardInterrupt:
logging.info("Training interrupted.")
def _get_user_input():
"""
Get user's input, which will be transformed into encoder input later.
"""
print("> ", end="")
sys.stdout.flush()
return sys.stdin.readline()
def find_right_bucket(length):
"""
Find the proper bucket for an encoder input based on its length.
"""
return min([b for b in range(len(config.BUCKETS))
if config.BUCKETS[b][0] >= length])
def construct_response(output_logits, inv_dec_vocab):
"""Construct a response to the user's encoder input.
This is a greedy decoder - outputs are just argmaxes of output_logits.
Args:
output_logits: the outputs from sequence to sequence wrapper.
output_logits is decoder_size np array, each of dim 1 x DEC_VOCAB
inv_dec_vocab: id2word, which is a list of vocabs.
Return:
Response of the input context.
"""
# print(output_logits[0])
# output_logits: a list of arrays. len(output_logits) is decoder length
# output_logits[0]: numpy.ndarray with shape (1, DEC_VOCAB)
outputs = [int(np.argmax(logit, axis=1)[0]) for logit in output_logits]
print(outputs)
# If there is an EOS symbol in outputs, cut them at that point.
if config.EOS_ID in outputs:
# FIXME: <\s> appears at the head of outputs.
outputs = outputs[:outputs.index(config.EOS_ID)]
# Print out sentence corresponding to outputs.
return "".join([inv_dec_vocab[output] for output in outputs])
def chat():
"""
In test mode, we don"t to create the backward path.
"""
_, enc_vocab = data_utils.load_vocab(os.path.join(config.DATA_PATH, "vocab.enc"))
# `inv_dec_vocab` <type "list">: id2word.
inv_dec_vocab, _ = data_utils.load_vocab(os.path.join(config.DATA_PATH, "vocab.dec"))
model = ChatBotModel(True, batch_size=1)
model.build_graph()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
check_restore_parameters(sess, saver)
output_file = open(os.path.join(config.DATA_PATH, config.TERMINAL_OUTPUT),
"a+", encoding="utf-8")
# Decode from standard input.
max_length = config.BUCKETS[-1][0]
print("Welcome to TensorBro. Say something. Enter to exit. Max length is",
max_length)
while True:
line = _get_user_input()
if hasattr(line, "decode"):
# If using Python 2
# FIXME: UnicodeError when deleting Chinese in terminal.
line = line.decode("utf-8")
if len(line) > 0 and line[-1] == "\n":
line = line[:-1]
if not line:
break
output_file.write("HUMAN ++++ " + line + "\n")
# Get token-ids for the input sentence.
token_ids = data_utils.sentence2id(enc_vocab, line)
if len(token_ids) > max_length:
print("Max length I can handle is:", max_length)
# line = _get_user_input()
continue
# Which bucket does it belong to?
bucket_id = find_right_bucket(len(token_ids))
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, decoder_masks = data_utils.get_batch(
[(token_ids, [])], bucket_id, batch_size=1)
# Get output logits for the sentence.
_, _, output_logits = run_step(sess, model, encoder_inputs,
decoder_inputs, decoder_masks,
bucket_id, True)
response = construct_response(output_logits, inv_dec_vocab)
print(response)
output_file.write("BOT ++++ " + response + "\n")
output_file.write("=============================================\n")
output_file.close()
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--mode", choices={"train", "chat"},
default="train",
help="mode. if not specified, it's in the train mode")
args = parser.parse_args()
if not os.path.exists(os.path.join(config.DATA_PATH, "test_ids.dec")):
data_utils.process_data()
print("Data ready!")
# create checkpoints folder if there isn't one already
data_utils.make_dir(config.CPT_PATH)
if args.mode == "train":
train()
elif args.mode == "chat":
chat()
if __name__ == "__main__":
main()