-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
executable file
·458 lines (387 loc) · 20.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import torch
import torch.nn as nn
import numpy as np
from transformers import (RobertaConfig, RobertaModel, RobertaTokenizer,
BartConfig, BartForConditionalGeneration, BartTokenizer,
T5Config, T5ForConditionalGeneration, T5Tokenizer)
import logging,os
logger = logging.getLogger(__name__)
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer),
't5': (T5Config, T5ForConditionalGeneration, T5Tokenizer),
'codet5': (T5Config, T5ForConditionalGeneration, RobertaTokenizer),
'bart': (BartConfig, BartForConditionalGeneration, BartTokenizer)}
def get_model_size(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
model_size = sum([np.prod(p.size()) for p in model_parameters])
return "{}M".format(round(model_size / 1e+6))
def build_or_load_gen_model(args):
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
local_pretrained_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "huggingface.co", args.model_name_or_path)
if os.path.exists(local_pretrained_path):
logger.info("load pre-trained model locally :)")
args.model_name_or_path = local_pretrained_path
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
local_tokenizer_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "huggingface.co", args.tokenizer_name)
if os.path.exists(local_tokenizer_path):
logger.info("load tokenizer locally :)")
args.tokenizer_name = local_tokenizer_path
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name)
if args.task == 'cmt_msg_gen':
model = model_class.from_pretrained(args.model_name_or_path) # 'Salesforce/codet5-small'
elif args.model_type == 'roberta': ### check pretrained model,
encoder = model_class.from_pretrained(args.model_name_or_path, config=config)
decoder_layer = nn.TransformerDecoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads)
decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
model = Seq2Seq(encoder=encoder, decoder=decoder, config=config,
beam_size=args.beam_size, max_length=args.max_target_length,
sos_id=tokenizer.cls_token_id, eos_id=tokenizer.sep_token_id)
else:
model = model_class.from_pretrained(args.model_name_or_path)
logger.info("Finish loading model [%s] from %s", get_model_size(model), args.model_name_or_path)
if args.load_model_path is not None:
logger.info("Reload model from {}".format(args.load_model_path))
model.load_state_dict(torch.load(args.load_model_path))
return config, model, tokenizer
class RobertaClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.out_proj = nn.Linear(config.hidden_size, 2)
def forward(self, x, **kwargs):
x = x.reshape(-1, x.size(-1) * 2)
x = self.dense(x)
x = torch.tanh(x)
x = self.out_proj(x)
return x
class CloneModel(nn.Module):
def __init__(self, encoder, config, tokenizer, args):
super(CloneModel, self).__init__()
self.encoder = encoder
self.config = config
self.tokenizer = tokenizer
self.classifier = RobertaClassificationHead(config)
self.args = args
def get_t5_vec(self, source_ids):
attention_mask = source_ids.ne(self.tokenizer.pad_token_id)
outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask,
labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True)
hidden_states = outputs['decoder_hidden_states'][-1]
eos_mask = source_ids.eq(self.config.eos_token_id)
if len(torch.unique(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1,
hidden_states.size(-1))[:, -1, :]
return vec
def get_bart_vec(self, source_ids):
attention_mask = source_ids.ne(self.tokenizer.pad_token_id)
outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask,
labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True)
hidden_states = outputs['decoder_hidden_states'][-1]
eos_mask = source_ids.eq(self.config.eos_token_id)
if len(torch.unique(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1,
hidden_states.size(-1))[:, -1, :]
return vec
def get_roberta_vec(self, source_ids):
attention_mask = source_ids.ne(self.tokenizer.pad_token_id)
vec = self.encoder(input_ids=source_ids, attention_mask=attention_mask)[0][:, 0, :]
return vec
def forward(self, source_ids=None, labels=None):
source_ids = source_ids.view(-1, self.args.max_source_length)
if self.args.model_type == 'codet5':
vec = self.get_t5_vec(source_ids)
elif self.args.model_type == 'bart':
vec = self.get_bart_vec(source_ids)
elif self.args.model_type == 'roberta':
vec = self.get_roberta_vec(source_ids)
logits = self.classifier(vec)
prob = nn.functional.softmax(logits)
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits, labels)
return loss, prob
else:
return prob
class DefectModel(nn.Module):
def __init__(self, encoder, config, tokenizer, args):
super(DefectModel, self).__init__()
self.encoder = encoder
self.config = config
self.tokenizer = tokenizer
self.classifier = nn.Linear(config.hidden_size, 2)
self.args = args
def get_t5_vec(self, source_ids):
attention_mask = source_ids.ne(self.tokenizer.pad_token_id)
outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask,
labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True)
hidden_states = outputs['decoder_hidden_states'][-1]
eos_mask = source_ids.eq(self.config.eos_token_id)
if len(torch.unique(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1,
hidden_states.size(-1))[:, -1, :]
return vec
def get_bart_vec(self, source_ids):
attention_mask = source_ids.ne(self.tokenizer.pad_token_id)
outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask,
labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True)
hidden_states = outputs['decoder_hidden_states'][-1]
eos_mask = source_ids.eq(self.config.eos_token_id)
if len(torch.unique(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1,
hidden_states.size(-1))[:, -1, :]
return vec
def get_roberta_vec(self, source_ids):
attention_mask = source_ids.ne(self.tokenizer.pad_token_id)
vec = self.encoder(input_ids=source_ids, attention_mask=attention_mask)[0][:, 0, :]
return vec
def forward(self, source_ids=None, labels=None):
source_ids = source_ids.view(-1, self.args.max_source_length)
if self.args.model_type == 'codet5':
vec = self.get_t5_vec(source_ids)
elif self.args.model_type == 'bart':
vec = self.get_bart_vec(source_ids)
elif self.args.model_type == 'roberta':
vec = self.get_roberta_vec(source_ids)
logits = self.classifier(vec)
prob = nn.functional.softmax(logits)
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits, labels)
return loss, prob
else:
return prob
# https://github.com/microsoft/CodeBERT/blob/master/CodeBERT/code2nl/model.py
class Seq2Seq(nn.Module):
"""
Build Seqence-to-Sequence.
Parameters:
* `encoder`- encoder of seq2seq model. e.g. roberta
* `decoder`- decoder of seq2seq model. e.g. transformer
* `config`- configuration of encoder model.
* `beam_size`- beam size for beam search.
* `max_length`- max length of target for beam search.
* `sos_id`- start of symbol ids in target for beam search.
* `eos_id`- end of symbol ids in target for beam search.
"""
def __init__(self, encoder, decoder, config, beam_size=None, max_length=None, sos_id=None, eos_id=None):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.config = config
if not hasattr(config, "type_vocab_size"):
config.type_vocab_size = 2 ## 3 TODO
if not hasattr(config, "max_position_embeddings"):
config.max_position_embeddings = 514
# the two lines below seems not need to be revised TODO
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.segment_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.register_buffer("bias", torch.tril(torch.ones(2048, 2048)))
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.lsm = nn.LogSoftmax(dim=-1)
self.tie_weights()
self.beam_size = beam_size
self.max_length = max_length
self.sos_id = sos_id
self.eos_id = eos_id
def _tie_or_clone_weights(self, first_module, second_module):
""" Tie or clone module weights depending of weither we are using TorchScript or not
"""
if self.config.torchscript:
first_module.weight = nn.Parameter(second_module.weight.clone())
else:
first_module.weight = second_module.weight
def tie_weights(self):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self._tie_or_clone_weights(self.lm_head,
self.encoder.embeddings.word_embeddings)
def forward(self, source_ids=None, source_mask=None, target_ids=None, target_mask=None, args=None, segment_ids=None, position_ids=None, gen_type_scope=False): # this function seems not need to be revised TODO
outputs = self.encoder(source_ids, attention_mask=source_mask)
encoder_output = outputs[0].permute([1, 0, 2]).contiguous()
if target_ids is not None:
if gen_type_scope is False:
attn_mask = -1e4 * (1 - self.bias[:target_ids.shape[1], :target_ids.shape[1]])
tgt_embeddings_base = self.encoder.embeddings(target_ids)
if segment_ids is not None and position_ids is not None:
segment_embeddings = self.segment_embeddings(segment_ids)
position_embeddings = self.position_embeddings(position_ids)
tgt_embeddings_base = tgt_embeddings_base + segment_embeddings + position_embeddings
tgt_embeddings = tgt_embeddings_base.permute([1, 0, 2]).contiguous()
out = self.decoder(tgt_embeddings, encoder_output, tgt_mask=attn_mask,
memory_key_padding_mask=~source_mask)
# memory_key_padding_mask=(1 - source_mask).bool())
hidden_states = torch.tanh(self.dense(out)).permute([1, 0, 2]).contiguous()
lm_logits = self.lm_head(hidden_states)
# Shift so that tokens < n predict n
active_loss = target_mask[..., 1:].ne(0).view(-1) == 1
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = target_ids[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss],
shift_labels.view(-1)[active_loss])
outputs = loss, loss * active_loss.sum(), active_loss.sum()
return outputs
else:
preds = []
zero = torch.cuda.LongTensor(1).fill_(0)
for i in range(source_ids.shape[0]):
context = encoder_output[:, i:i + 1]
context_mask = source_mask[i:i + 1, :]
beam = Beam(self.beam_size, self.sos_id, self.eos_id)
input_ids = beam.getCurrentState()
context = context.repeat(1, self.beam_size, 1)
context_mask = context_mask.repeat(self.beam_size, 1)
for _ in range(self.max_length):
if beam.done():
break
attn_mask = -1e4 * (1 - self.bias[:input_ids.shape[1], :input_ids.shape[1]])
tgt_embeddings = self.encoder.embeddings(input_ids).permute([1, 0, 2]).contiguous()
out = self.decoder(tgt_embeddings, context, tgt_mask=attn_mask,
memory_key_padding_mask=~context_mask)
# memory_key_padding_mask=(1 - context_mask).bool())
out = torch.tanh(self.dense(out))
hidden_states = out.permute([1, 0, 2]).contiguous()[:, -1, :]
out = self.lsm(self.lm_head(hidden_states)).data
beam.advance(out)
input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin()))
input_ids = torch.cat((input_ids, beam.getCurrentState()), -1)
hyp = beam.getHyp(beam.getFinal())
pred = beam.buildTargetTokens(hyp)[:self.beam_size]
pred = [torch.cat([x.view(-1) for x in p] + [zero] * (self.max_length - len(p))).view(1, -1) for p in
pred]
preds.append(torch.cat(pred, 0).unsqueeze(0))
preds = torch.cat(preds, 0)
return preds
else:
preds = []
zero = torch.cuda.LongTensor(1).fill_(0)
for i in range(source_ids.shape[0]):
context = encoder_output[:, i:i + 1]
context_mask = source_mask[i:i + 1, :]
beam = Beam(self.beam_size, self.sos_id, self.eos_id)
input_ids = beam.getCurrentState()
context = context.repeat(1, self.beam_size, 1)
context_mask = context_mask.repeat(self.beam_size, 1)
for _ in range(self.max_length):
if beam.done():
break
attn_mask = -1e4 * (1 - self.bias[:input_ids.shape[1], :input_ids.shape[1]])
tgt_embeddings = self.encoder.embeddings(input_ids).permute([1, 0, 2]).contiguous()
out = self.decoder(tgt_embeddings, context, tgt_mask=attn_mask,
memory_key_padding_mask=~context_mask)
# memory_key_padding_mask=(1 - context_mask).bool())
out = torch.tanh(self.dense(out))
hidden_states = out.permute([1, 0, 2]).contiguous()[:, -1, :]
out = self.lsm(self.lm_head(hidden_states)).data
beam.advance(out)
input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin()))
input_ids = torch.cat((input_ids, beam.getCurrentState()), -1)
hyp = beam.getHyp(beam.getFinal())
pred = beam.buildTargetTokens(hyp)[:self.beam_size]
pred = [torch.cat([x.view(-1) for x in p] + [zero] * (self.max_length - len(p))).view(1, -1) for p in
pred]
preds.append(torch.cat(pred, 0).unsqueeze(0))
preds = torch.cat(preds, 0)
return preds
class Beam(object):
def __init__(self, size, sos, eos):
self.size = size
self.tt = torch.cuda
# The score for each translation on the beam.
self.scores = self.tt.FloatTensor(size).zero_()
# The backpointers at each time-step.
self.prevKs = []
# The outputs at each time-step.
self.nextYs = [self.tt.LongTensor(size)
.fill_(0)]
self.nextYs[0][0] = sos
# Has EOS topped the beam yet.
self._eos = eos
self.eosTop = False
# Time and k pair for finished.
self.finished = []
def getCurrentState(self):
"Get the outputs for the current timestep."
batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1)
return batch
def getCurrentOrigin(self):
"Get the backpointers for the current timestep."
return self.prevKs[-1]
def advance(self, wordLk):
"""
Given prob over words for every last beam `wordLk` and attention
`attnOut`: Compute and update the beam search.
Parameters:
* `wordLk`- probs of advancing from the last step (K x words)
* `attnOut`- attention at the last step
Returns: True if beam search is complete.
"""
numWords = wordLk.size(1)
# Sum the previous scores.
if len(self.prevKs) > 0:
beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk)
# Don't let EOS have children.
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] == self._eos:
beamLk[i] = -1e20
else:
beamLk = wordLk[0]
flatBeamLk = beamLk.view(-1)
bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True)
self.scores = bestScores
# bestScoresId is flattened beam x word array, so calculate which
# word and beam each score came from
prevK = bestScoresId // numWords
self.prevKs.append(prevK)
self.nextYs.append((bestScoresId - prevK * numWords))
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] == self._eos:
s = self.scores[i]
self.finished.append((s, len(self.nextYs) - 1, i))
# End condition is when top-of-beam is EOS and no global score.
if self.nextYs[-1][0] == self._eos:
self.eosTop = True
def done(self):
return self.eosTop and len(self.finished) >= self.size
def getFinal(self):
if len(self.finished) == 0:
self.finished.append((self.scores[0], len(self.nextYs) - 1, 0))
self.finished.sort(key=lambda a: -a[0])
if len(self.finished) != self.size:
unfinished = []
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] != self._eos:
s = self.scores[i]
unfinished.append((s, len(self.nextYs) - 1, i))
unfinished.sort(key=lambda a: -a[0])
self.finished += unfinished[:self.size - len(self.finished)]
return self.finished[:self.size]
def getHyp(self, beam_res):
"""
Walk back to construct the full hypothesis.
"""
hyps = []
for _, timestep, k in beam_res:
hyp = []
for j in range(len(self.prevKs[:timestep]) - 1, -1, -1):
hyp.append(self.nextYs[j + 1][k])
k = self.prevKs[j][k]
hyps.append(hyp[::-1])
return hyps
def buildTargetTokens(self, preds):
sentence = []
for pred in preds:
tokens = []
for tok in pred:
if tok == self._eos:
break
tokens.append(tok)
sentence.append(tokens)
return sentence