Skip to content

Latest commit

 

History

History
 
 

Baseline

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Closer Look at Few-shot Classification

Introduction

Name: Baseline
Embed.: Conv64F/ResNet12/ResNet18
Type: Fine-tuning
Venue: ICLR'19
Codes: CloserLookFewShot
  • When reproduceingthis method with the same setting in the original paper, you should skip validation during training-stage and choose the last model it saves.
  • Notice that baseline use N-cls-head to train, where N > num_base_classes.

Cite this work with:

@inproceedings{DBLP:conf/iclr/ChenLKWH19,
  author    = {Wei{-}Yu Chen and
               Yen{-}Cheng Liu and
               Zsolt Kira and
               Yu{-}Chiang Frank Wang and
               Jia{-}Bin Huang},
  title     = {A Closer Look at Few-shot Classification},
  booktitle = {7th International Conference on Learning Representations, {ICLR} 2019,
               New Orleans, LA, USA, May 6-9, 2019},
  year      = {2019},
  url       = {https://openreview.net/forum?id=HkxLXnAcFQ}
}

Results and Models

Classification

Embedding 📖 miniImageNet (5,1) 💻 miniImageNet (5,1) 📖miniImageNet (5,5) 💻 miniImageNet (5,5) 📝 Comments
1 Conv64F 42.11 42.34 ± 0.31 ⬇️ 📋 62.53 62.18 ± 0.30 ⬇️ 📋 Reproduce
2 Conv64F - 44.90 ± 0.32 ⬇️ 📋 - 63.96 ± 0.30 ⬇️ 📋 Table.2
3 ResNet12 - 56.39 ± 0.36 ⬇️ 📋 - 76.18 ± 0.27 ⬇️ 📋 Table.2
4 ResNet18 - 54.11 ± 0.35 ⬇️ 📋 - 74.44 ± 0.29 ⬇️ 📋 Table.2
5 ResNet18 - 51.18 ± 0.34 ⬇️ 📋 - 74.06 ± 0.28 ⬇️ 📋 Reproduce
Embedding 📖 tieredImageNet (5,1) 💻 tieredImageNet (5,1) 📖tieredImageNet (5,5) 💻 tieredImageNet (5,5) 📝 Comments
1 Conv64F - 48.20 ± 0.35 ⬇️ 📋 - 68.96 ± 0.33 ⬇️ 📋 Table2
2 ResNet18 - 64.65 ± 0.41 ⬇️ 📋 - 82.73 ± 0.29 ⬇️ 📋 Table2