Name: | Baseline |
---|---|
Embed.: | Conv64F/ResNet12/ResNet18 |
Type: | Fine-tuning |
Venue: | ICLR'19 |
Codes: | CloserLookFewShot |
- When reproduceingthis method with the same setting in the original paper, you should skip validation during training-stage and choose the last model it saves.
- Notice that baseline use N-cls-head to train, where N > num_base_classes.
Cite this work with:
@inproceedings{DBLP:conf/iclr/ChenLKWH19,
author = {Wei{-}Yu Chen and
Yen{-}Cheng Liu and
Zsolt Kira and
Yu{-}Chiang Frank Wang and
Jia{-}Bin Huang},
title = {A Closer Look at Few-shot Classification},
booktitle = {7th International Conference on Learning Representations, {ICLR} 2019,
New Orleans, LA, USA, May 6-9, 2019},
year = {2019},
url = {https://openreview.net/forum?id=HkxLXnAcFQ}
}
Classification
Embedding | 📖 miniImageNet (5,1) | 💻 miniImageNet (5,1) | 📖miniImageNet (5,5) | 💻 miniImageNet (5,5) | 📝 Comments | |
---|---|---|---|---|---|---|
1 | Conv64F | 42.11 | 42.34 ± 0.31 ⬇️ 📋 | 62.53 | 62.18 ± 0.30 ⬇️ 📋 | Reproduce |
2 | Conv64F | - | 44.90 ± 0.32 ⬇️ 📋 | - | 63.96 ± 0.30 ⬇️ 📋 | Table.2 |
3 | ResNet12 | - | 56.39 ± 0.36 ⬇️ 📋 | - | 76.18 ± 0.27 ⬇️ 📋 | Table.2 |
4 | ResNet18 | - | 54.11 ± 0.35 ⬇️ 📋 | - | 74.44 ± 0.29 ⬇️ 📋 | Table.2 |
5 | ResNet18 | - | 51.18 ± 0.34 ⬇️ 📋 | - | 74.06 ± 0.28 ⬇️ 📋 | Reproduce |
Embedding | 📖 tieredImageNet (5,1) | 💻 tieredImageNet (5,1) | 📖tieredImageNet (5,5) | 💻 tieredImageNet (5,5) | 📝 Comments | |
---|---|---|---|---|---|---|
1 | Conv64F | - | 48.20 ± 0.35 ⬇️ 📋 | - | 68.96 ± 0.33 ⬇️ 📋 | Table2 |
2 | ResNet18 | - | 64.65 ± 0.41 ⬇️ 📋 | - | 82.73 ± 0.29 ⬇️ 📋 | Table2 |