Name: | Prototypical Networks |
---|---|
Embed.: | Conv64F |
Type: | Metric |
Venue: | NeurIPS'17 |
Codes: | Prototypical-Networks-for-Few-shot-Learning-PyTorch |
Cite this work with:
@inproceedings{DBLP:conf/nips/SnellSZ17,
author = {Jake Snell and
Kevin Swersky and
Richard S. Zemel},
title = {Prototypical Networks for Few-shot Learning},
booktitle = {Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, {USA}},
pages = {4077--4087},
year = {2017},
url = {https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html}
}
Classification
Embedding | 📖 miniImageNet (5,1) | 💻 miniImageNet (5,1) | 📖miniImageNet (5,5) | 💻 miniImageNet (5,5) | 📝 Comments | |
---|---|---|---|---|---|---|
1 | Conv64F | - | 47.05 ± 0.35 ⬇️ 📋 | - | 68.56 ± 0.16 ⬇️ 📋 | Table.2 |
2 | ResNet12 | - | 54.25 ± 0.37 ⬇️ 📋 | - | 74.65 ± 0.29 ⬇️ 📋 | Table.2 |
Embedding | 📖 tieredImageNet (5,1) | 💻 tieredImageNet (5,1) | 📖tieredImageNet (5,5) | 💻 tieredImageNet (5,5) | 📝 Comments | |
---|---|---|---|---|---|---|
1 | Conv64F | - | 46.11 ± 0.39 ⬇️ 📋 | - | 70.07 ± 0.34 ⬇️ 📋 | Table.2 |