Skip to content

Latest commit

 

History

History
 
 

Proto

Prototypical Networks for Few-shot Learning

Introduction

Name: Prototypical Networks
Embed.: Conv64F
Type: Metric
Venue: NeurIPS'17
Codes: Prototypical-Networks-for-Few-shot-Learning-PyTorch

Cite this work with:

@inproceedings{DBLP:conf/nips/SnellSZ17,
  author    = {Jake Snell and
               Kevin Swersky and
               Richard S. Zemel},
  title     = {Prototypical Networks for Few-shot Learning},
  booktitle = {Advances in Neural Information Processing Systems 30: Annual Conference
               on Neural Information Processing Systems 2017, December 4-9, 2017,
               Long Beach, CA, {USA}},
  pages     = {4077--4087},
  year      = {2017},
  url       = {https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html}
}

Results and Models

Classification

Embedding 📖 miniImageNet (5,1) 💻 miniImageNet (5,1) 📖miniImageNet (5,5) 💻 miniImageNet (5,5) 📝 Comments
1 Conv64F - 47.05 ± 0.35 ⬇️ 📋 - 68.56 ± 0.16 ⬇️ 📋 Table.2
2 ResNet12 - 54.25 ± 0.37 ⬇️ 📋 - 74.65 ± 0.29 ⬇️ 📋 Table.2
Embedding 📖 tieredImageNet (5,1) 💻 tieredImageNet (5,1) 📖tieredImageNet (5,5) 💻 tieredImageNet (5,5) 📝 Comments
1 Conv64F - 46.11 ± 0.39 ⬇️ 📋 - 70.07 ± 0.34 ⬇️ 📋 Table.2