diff --git a/docs/source/quickstart/1_data.py b/docs/source/quickstart/1_data.py index a6fdc5a0..2a6f5d61 100644 --- a/docs/source/quickstart/1_data.py +++ b/docs/source/quickstart/1_data.py @@ -7,7 +7,7 @@ # format_version: '1.3' # jupytext_version: 1.14.7 # kernelspec: -# display_name: Python 3 +# display_name: Python 3 (ipykernel) # language: python # name: python3 # --- @@ -45,7 +45,7 @@ shutil.rmtree(file) # %% [markdown] -# For this quickstart, we will use a tiny example dataset extracted from the 10X multiome PBMC example data. We'll copy over both the h5ad for the transcriptomics data, and the fragments.tsv for the accessibility data. +# For this quickstart, we will use a tiny example dataset extracted from the 10X multiome PBMC example data, in which we only retained 50 genes. In your real situations, we typically want to use all genes. We'll copy over both the h5ad for the transcriptomics data, and the fragments.tsv for the accessibility data. # %% import pkg_resources @@ -73,7 +73,7 @@ transcriptome = chd.data.Transcriptome.from_adata(adata, path=dataset_folder / "transcriptome") # %% -# !ls {dataset_folder}/* +transcriptome # %% [markdown] #
@@ -96,12 +96,13 @@ # ChromatinHD defines a set of regions of interest, typically surrounding transcription start sites of a gene. Since we typically do not know which transcription start sites are used, we can either use the canonical ones (as determined by e.g. ENCODE) or use the ATAC-seq data to select the one that is most open. We will use the latter option here. # %% [markdown] -# We first get the transcripts for each gene. +# We first get the transcripts for each gene. We extract this from biomart using the ensembl gene ids, which in this case are used as the index of the `transcriptome.var`. # %% transcripts = chd.biomart.get_transcripts(chd.biomart.Dataset.from_genome("GRCh38"), gene_ids=transcriptome.var.index) fragments_file = dataset_folder / "fragments.tsv.gz" transcripts = chd.data.regions.select_tss_from_fragments(transcripts, fragments_file) +transcripts.head() # %% [markdown] # Now we can define the regions around the TSS. In this case we choose -10kb and +10kb around a TSS, although in real situations this will typically be much bigger (e.g. -100kb - +100kb) @@ -110,11 +111,9 @@ regions = chd.data.Regions.from_transcripts( transcripts, path=dataset_folder / "regions", - window=[-10000, 10000], + window=[-100000, 100000], ) - -# %% -# !ls {dataset_folder}/* +regions # %% [markdown] #
@@ -140,14 +139,11 @@ # %% if not (dataset_folder / "fragments.tsv.gz.tbi").exists(): - import subprocess + import pysam + pysam.tabix_index(str(dataset_folder / "fragments.tsv.gz"), preset = "bed") - subprocess.run( - [ - "tabix", - dataset_folder / "fragments.tsv.gz", - ] - ) +# %% [markdown] +# We now create a ChromatinHD fragments object using the `fragments.tsv` file and a set of regions. This will populate a set of tensors on disk containing information on where each fragment lies within the region and to which cell and region it belongs: # %% fragments = chd.data.Fragments.from_fragments_tsv( @@ -156,12 +152,22 @@ obs=transcriptome.obs, path=dataset_folder / "fragments", ) +fragments -# %% -fragments.create_cellxgene_indptr() +# %% [markdown] +# During training or inference of any models, we often require fast access to all fragments belong to a particular cell and region. This can be sped up by precalculating pointers to each region and cell combination: # %% -# !ls {dataset_folder}/* +fragments.create_regionxcell_indptr() + +# %% [markdown] +#
+#
+# How data is stored in ChromatinHD +#

We use zarr format to store data, and either TensorStore or Xarray to load data as needed. +#

+#
+#
# %% [markdown] # ### Training folds @@ -171,6 +177,11 @@ # %% folds = chd.data.folds.Folds(dataset_folder / "folds" / "5x1").sample_cells(fragments, 5, 1) +folds + +# %% +folds = chd.data.folds.Folds(dataset_folder / "folds" / "5x5").sample_cells(fragments, 5, 5) +folds # %% [markdown] # ## Optional data¶ @@ -183,67 +194,20 @@ # %% clustering = chd.data.Clustering.from_labels(adata.obs["celltype"], path=dataset_folder / "clustering") - -# %% -# !ls {clustering.path} +clustering # %% [markdown] # ### Motif scan¶ # %% [markdown] -#
-# This functionality is still under construction and is only used for visualization/interpretation use cases for now. -#
+# We can also scan for motifs and store it on disk, to be used to link transcription factors to particular regions of interest. Models that use this data directly are forthcoming. # %% [markdown] -# Let's first download the HOCOMOCO motif data: +# Let's first download the HOCOMOCO motif data. This is a simple wrapper function that downloads and processes relevant motif data from the HOCOMOCO website. # %% -motifs_folder = dataset_folder / "motifs" -motifs_folder.mkdir(exist_ok=True, parents=True) - -# download cutoffs, pwms and annotations -# !wget https://hocomoco11.autosome.org/final_bundle/hocomoco11/core/HUMAN/mono/HOCOMOCOv11_core_standard_thresholds_HUMAN_mono.txt -O {motifs_folder}/pwm_cutoffs.txt -# !wget https://hocomoco11.autosome.org/final_bundle/hocomoco11/core/HUMAN/mono/HOCOMOCOv11_core_pwms_HUMAN_mono.txt -O {motifs_folder}/pwms.txt -# !wget https://hocomoco11.autosome.org/final_bundle/hocomoco11/core/HUMAN/mono/HOCOMOCOv11_core_annotation_HUMAN_mono.tsv -O {motifs_folder}/annot.txt - -# %% -import numpy as np -import pandas as pd - -# %% [markdown] -# We read in all PWMs: - -# %% -pwms = {} -motif = None -for line in (motifs_folder / "pwms.txt").open(): - if line.startswith(">"): - if motif is not None: - pwms[motif_id] = motif - motif_id = line[1:].strip("\n") - motif = [] - else: - motif.append([float(x) for x in line.split("\t")]) -pwms = {motif_id: np.array(pwm) for motif_id, pwm in pwms.items()} - -# %% [markdown] -# And gather some metadata about each motif - -# %% -motifs = pd.DataFrame({"motif": pwms.keys()}).set_index("motif") -motif_cutoffs = pd.read_table( - motifs_folder / "pwm_cutoffs.txt", - names=["motif", "cutoff_001", "cutoff_0005", "cutoff_0001"], - skiprows=1, -).set_index("motif") -motifs = motifs.join(motif_cutoffs) -annot = ( - pd.read_table(motifs_folder / "annot.txt") - .rename(columns={"Model": "motif", "Transcription factor": "gene_label"}) - .set_index("motif") -) -motifs = motifs.join(annot) +import chromatinhd.data.motifscan.download +pwms, motifs = chd.data.motifscan.download.get_hocomoco(dataset_folder / "motifs", organism = "human") # %% [markdown] # You also need to provide the location where the genome fasta file is stored. In our case this is located at /data/genome/GRCh38/, which was installed using `genomepy.install_genome("GRCh38", genomes_dir = "/data/genome/")`. @@ -263,10 +227,8 @@ pwms, regions, motifs=motifs, - cutoff_col="cutoff_0001", + cutoff_col="cutoff_0.0001", fasta_file=fasta_file, path=dataset_folder / "motifscan", ) - -# %% -# !ls {motifscan.path} +motifscan diff --git a/docs/source/quickstart/2_pred.py b/docs/source/quickstart/2_pred.py index c08d65f0..454d8d37 100644 --- a/docs/source/quickstart/2_pred.py +++ b/docs/source/quickstart/2_pred.py @@ -7,7 +7,7 @@ # format_version: '1.3' # jupytext_version: 1.14.7 # kernelspec: -# display_name: Python 3 +# display_name: Python 3 (ipykernel) # language: python # name: python3 # --- @@ -48,10 +48,12 @@ # The basic ChromatinHD-*pred* model # %% -models = chd.models.pred.model.additive.Models(dataset_folder / "models" / "additive", reset=True) +models = chd.models.pred.model.multiscale.Models(dataset_folder / "models", reset=True) # %% tags=["hide_output"] -models.train_models(fragments, transcriptome, folds) +models.train_models( + fragments=fragments, transcriptome=transcriptome, folds=folds, regions_oi=transcriptome.gene_id(["CCL4", "IRF1"]) +) # %% [markdown] # ## Some quality checks @@ -60,11 +62,11 @@ # We will first check whether the model learned something, by comparing the predictive performance with a baseline # %% -gene_cors = models.get_gene_cors(fragments, transcriptome, folds) +gene_cors = models.get_region_cors(fragments, transcriptome, folds) gene_cors["symbol"] = gene_cors.index.map(transcriptome.symbol) # %% -gene_cors.sort_values("deltacor", ascending=False).head(10) +gene_cors # %% import pandas as pd @@ -73,9 +75,9 @@ fig, ax = plt.subplots(figsize=(4, 4)) for name, group in gene_cors.iterrows(): - ax.plot([0, 1], group[["cor_n_fragments", "cor_predicted"]], color="#3338", zorder=0, marker="o", markersize=2) + ax.plot([0, 1], group[["cor_n_fragments", "cor"]], color="#3338", zorder=0, marker="o", markersize=2) ax.boxplot( - gene_cors[["cor_n_fragments", "cor_predicted"]].values, + gene_cors[["cor_n_fragments", "cor"]].values, positions=[0, 1], widths=0.1, showfliers=False, @@ -84,60 +86,58 @@ meanprops={"color": "red", "linewidth": 2}, ) ax.set_xticks([0, 1]) +ax.set_ylim(0) ax.set_xticklabels(["# fragments", "ChromatinHD-pred"]) ax.set_ylabel("$cor$") -# %% [markdown] -# Note that every gene gains from the ChromatinHD model, even if some only gain a little. The genes with a low $\Delta cor$ are often those with only a few fragments: - -# %% -fig, ax = plt.subplots(figsize=(4, 4)) -ax.scatter(gene_cors["n_fragments"], gene_cors["deltacor"]) -ax.set_ylabel("$\\Delta$ cor") -ax.set_xlabel("# fragments") -ax.set_xscale("log") - # %% [markdown] # ## Predictivity per position # %% [markdown] -# To determine which regions were important for the model to predict gene expression, we will censor fragments from windows of various sizes, and then check whether the model performance on a set of test cells decreased. This functionality is implemented in the `RegionMultiWindow` class. This will only run the censoring for a subset of genes to speed up interpretation. +# To determine which regions were important for the model to predict gene expression, we will censor fragments from windows of various sizes, and then check whether the model performance on a set of test cells decreased. This functionality is implemented in the `GeneMultiWindow` class. This will only run the censoring for a subset of genes to speed up interpretation. # %% censorer = chd.models.pred.interpret.MultiWindowCensorer(fragments.regions.window) -regionmultiwindow = chd.models.pred.interpret.RegionMultiWindow(models.path / "interpret" / "regionmultiwindow") +import chromatinhd +censorer.__class__ = chromatinhd.models.pred.interpret.censorers.MultiWindowCensorer +regionmultiwindow = chd.models.pred.interpret.RegionMultiWindow.create( + path = models.path / "interpret" / "regionmultiwindow", + folds = folds, + transcriptome = transcriptome, + censorer = censorer, + fragments = fragments, +) # %% regionmultiwindow.score( - fragments, - transcriptome, - models, - folds, - transcriptome.gene_id( + models = models, + regions = transcriptome.gene_id( [ "CCL4", - "IL1B", - "EBF1", - "PAX5", - "CD79A", - "RHEX", + "IRF1", ] ), - censorer=censorer, + folds = folds, ) # %% regionmultiwindow.interpolate() +# %% [markdown] +# ### Visualizing predictivity + +# %% [markdown] +# We can visualize the predictivity as follows. This shows which regions of the genome are positively and negatively associated with gene expression. + # %% -symbol = "EBF1" +symbol = "IRF1" fig = chd.grid.Figure(chd.grid.Grid(padding_height=0.05)) width = 10 region = fragments.regions.coordinates.loc[transcriptome.gene_id(symbol)] -panel_genes = chd.plot.genome.genes.Genes.from_region(region, width=width) +panel_genes = chd.plot.genome.genes.Genes.from_region(region, width=width, genome = "GRCh38") fig.main.add_under(panel_genes) panel_pileup = chd.models.pred.plot.Pileup.from_regionmultiwindow( @@ -153,49 +153,106 @@ fig.plot() # %% [markdown] -# ## Co-predictivity per position +# Given that accessibility can be sparse, we often simply visualize the predictivity in regions with at least a minimum of accessibility. # %% [markdown] -# In a similar fashion we can determine the co-predictivity per position. +# Let's first select regions based on the number of fragments. Regions that are close together will be merged. # %% -censorer = chd.models.pred.interpret.WindowCensorer(fragments.regions.window) -regionpairwindow = chd.models.pred.interpret.RegionPairWindow( - models.path / "interpret" / "regionpairwindow", reset=True +symbol = "IRF1" +# symbol = "CCL4" +gene_id = transcriptome.gene_id(symbol) + +# %% +# decrease the lost_cutoff to see more regions +regions = regionmultiwindow.select_regions(gene_id, lost_cutoff = 0.15) +breaking = chd.grid.Breaking(regions) + +# %% +fig = chd.grid.Figure(chd.grid.Grid(padding_height=0.05)) + +region = fragments.regions.coordinates.loc[transcriptome.gene_id(symbol)] +panel_genes = chd.plot.genome.genes.GenesBroken.from_region(region, breaking=breaking, genome = "GRCh38") +fig.main.add_under(panel_genes) + +panel_pileup = chd.models.pred.plot.PileupBroken.from_regionmultiwindow( + regionmultiwindow, gene_id, breaking=breaking ) -regionpairwindow.score( - fragments, transcriptome, models, folds, censorer=censorer, genes=transcriptome.gene_id(["CCL4"]) +fig.main.add_under(panel_pileup) + +panel_predictivity = chd.models.pred.plot.PredictivityBroken.from_regionmultiwindow( + regionmultiwindow, gene_id, breaking=breaking, ymax = -0.1 ) +fig.main.add_under(panel_predictivity) + +fig.plot() + +# %% [markdown] vscode={"languageId": "markdown"} +# ## Co-predictivity + +# %% [markdown] +# In a similar fashion we can determine the co-predictivity per position. + +# %% +censorer = chd.models.pred.interpret.WindowCensorer(fragments.regions.window) +regionpairwindow = chd.models.pred.interpret.RegionPairWindow(models.path / "interpret" / "regionpairwindow", reset=True) +regionpairwindow.score(models, censorer = censorer, folds = folds, fragments = fragments) + +# %% [markdown] +# ### Visualization of co-predictivity # %% -symbol = "CCL4" +symbol = "IRF1" +# symbol = "CCL4" +gene_id = transcriptome.gene_id(symbol) +# %% +windows = regionmultiwindow.select_regions(gene_id, lost_cutoff = 0.2) +breaking = chd.grid.Breaking(windows) + +# %% fig = chd.grid.Figure(chd.grid.Grid(padding_height=0.05)) width = 10 # genes -region = fragments.regions.coordinates.loc[transcriptome.gene_id(symbol)] -panel_genes = chd.plot.genome.genes.Genes.from_region(region, width=width) +region = fragments.regions.coordinates.loc[gene_id] +panel_genes = chd.plot.genome.genes.GenesBroken.from_region(region, breaking = breaking) fig.main.add_under(panel_genes) # pileup -panel_pileup = chd.models.pred.plot.Pileup.from_RegionMultiWindow( - RegionMultiWindow, transcriptome.gene_id(symbol), width=width +panel_pileup = chd.models.pred.plot.PileupBroken.from_regionmultiwindow( + regionmultiwindow, gene_id, breaking = breaking, ) fig.main.add_under(panel_pileup) # predictivity -panel_predictivity = chd.models.pred.plot.Predictivity.from_RegionMultiWindow( - RegionMultiWindow, transcriptome.gene_id(symbol), width=width +panel_predictivity = chd.models.pred.plot.PredictivityBroken.from_regionmultiwindow( + regionmultiwindow, gene_id, breaking=breaking ) fig.main.add_under(panel_predictivity) # copredictivity -panel_copredictivity = chd.models.pred.plot.Copredictivity.from_regionpairwindow( - regionpairwindow, transcriptome.gene_id(symbol), width=width +panel_copredictivity = chd.models.pred.plot.CopredictivityBroken.from_regionpairwindow( + regionpairwindow, gene_id, breaking = breaking ) -fig.main.add_under(panel_copredictivity) +fig.main.add_under(panel_copredictivity, padding = 0.) fig.plot() # %% +plotdata = regionpairwindow.get_plotdata(gene_id, windows = windows).sort_values("cor") +plotdata["deltacor_min"] = plotdata[["deltacor1", "deltacor2"]].values.min(1) +plotdata["deltacor_max"] = plotdata[["deltacor1", "deltacor2"]].values.max(1) +plotdata["deltacor_prod"] = plotdata["deltacor1"] * plotdata["deltacor2"] +plotdata["deltacor_sum"] = plotdata["deltacor1"] + plotdata["deltacor2"] + +fig, ax = plt.subplots() +ax.scatter(plotdata_oi["deltacor_prod"].abs(), plotdata_oi["cor"].abs()) + +# %% [markdown] +# ## Extract predictive regions + +# %% +regionmultiwindow.extract_predictive_regions() + +# %% diff --git a/docs/source/quickstart/3_diff.py b/docs/source/quickstart/3_diff.py index b54a025e..216eae6f 100644 --- a/docs/source/quickstart/3_diff.py +++ b/docs/source/quickstart/3_diff.py @@ -7,7 +7,7 @@ # format_version: '1.3' # jupytext_version: 1.14.7 # kernelspec: -# display_name: Python 3 +# display_name: Python 3 (ipykernel) # language: python # name: python3 # --- @@ -49,10 +49,10 @@ # The basic ChromatinHD-*diff* model # %% -models = chd.models.diff.model.cutnf.Models(dataset_folder / "models" / "cutnf", reset=True) +models = chd.models.diff.model.binary.Models(dataset_folder / "models" / "cutnf", reset=True) # %% tags=["hide_output"] -models.train_models(fragments, clustering, folds) +models.train_models(fragments = fragments, clustering = clustering, folds = folds) # %% [markdown] # ## Interpret positionally @@ -61,35 +61,72 @@ # Currently, the ChromatinHD-model is purely positional, i.e. it only looks whether Tn5 insertion sites increase or decrease within a region. As such, we can only interpret it positionally: # %% -import chromatinhd.models.diff.interpret.genepositional +import chromatinhd.models.diff.interpret.regionpositional # %% clustering.cluster_info.index.name = "cluster" # %% -genepositional = chromatinhd.models.diff.interpret.genepositional.GenePositional( - path=models.path / "interpret" / "genepositional" +regionpositional = chromatinhd.models.diff.interpret.regionpositional.RegionPositional( + path=models.path / "interpret" / "regionpositional" ) -genepositional.score( - fragments, - clustering, - models, +regionpositional.score( + fragments = fragments, + clustering = clustering, + models = models, force=True, ) +# %% [markdown] +# ### Plot differential accessibility at a specific window + +# %% [markdown] +# To avoid overplotting, we will plot only the window close to the TSS. + +# %% +symbol = "IRF1" +gene_id = transcriptome.gene_id(symbol) + +# %% +window = [-10000, 10000] + +# %% +fig = chd.grid.Figure(chd.grid.Grid(padding_height=0.05, padding_width=0.05)) +width = 10 + +region = fragments.regions.coordinates.loc[transcriptome.gene_id(symbol)] +panel_genes = chd.plot.genome.genes.Genes.from_region(region, width=width, window = window) +fig.main.add_under(panel_genes) + +panel_differential = chd.models.diff.plot.Differential.from_regionpositional( + transcriptome.gene_id(symbol), regionpositional, cluster_info=clustering.cluster_info, panel_height=0.5, width=width, window = window +) +fig.main.add_under(panel_differential) + +panel_expression = chd.models.diff.plot.DifferentialExpression.from_transcriptome( + transcriptome=transcriptome, clustering=clustering, gene=transcriptome.gene_id(symbol), panel_height=0.5 +) +fig.main.add_right(panel_expression, row=panel_differential) + +fig.plot() + +# %% [markdown] +# ### Plot differential accessibility for all windows + # %% -symbol = "EBF1" +windows = regionpositional.select_windows(gene_id) +breaking = chd.grid.Breaking(windows) +# %% fig = chd.grid.Figure(chd.grid.Grid(padding_height=0.05, padding_width=0.05)) width = 10 region = fragments.regions.coordinates.loc[transcriptome.gene_id(symbol)] -panel_genes = chd.plot.genome.genes.Genes.from_region(region, width=width) +panel_genes = chd.plot.genome.genes.GenesBroken.from_region(region, breaking=breaking) fig.main.add_under(panel_genes) -plotdata, plotdata_mean = genepositional.get_plotdata(transcriptome.gene_id(symbol)) -panel_differential = chd.models.diff.plot.Differential( - plotdata, plotdata_mean, cluster_info=clustering.cluster_info, panel_height=0.5, width=width +panel_differential = chd.models.diff.plot.DifferentialBroken.from_regionpositional( + transcriptome.gene_id(symbol), regionpositional, cluster_info=clustering.cluster_info, panel_height=0.5, breaking=breaking, window = window ) fig.main.add_under(panel_differential) @@ -100,4 +137,7 @@ fig.plot() +# %% [markdown] +# ## Differential TFBSs + # %%