-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy paths12_write_predictions_LFD.py
119 lines (86 loc) · 4.84 KB
/
s12_write_predictions_LFD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
from pathlib import Path
import torch
from torch.utils.data import DataLoader
import lightning as L
import hydra
from omegaconf import DictConfig, OmegaConf, open_dict
from WD.utils import create_dir
from dm_zoo.diffusion.LFD_lightning import LatentForecastDiffusion
from WD.datasets import Conditional_Dataset_Zarr_Iterable
from WD.io import create_xr_output_variables
from WD.utils import AreaWeightedMSELoss
@hydra.main(version_base=None, config_path="./config", config_name="inference")
def LFD_inference(config: DictConfig) -> None:
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
dir_name = hydra_cfg['runtime']['output_dir'] # the directory the hydra log is written to.
dir_name = os.path.basename(os.path.normpath(dir_name)) # we only need the last part
model_name = config.model_name # we have to pass this to the bash file every time! (should contain a string).
nens = config.n_ensemble_members
experiment_name = hydra_cfg['runtime']['choices']['experiment']
ds_config = OmegaConf.load(f"{config.paths.dir_HydraConfigs}/data/{config.data.template}/.hydra/config.yaml")
ml_config = OmegaConf.load(f"{config.paths.dir_HydraConfigs}/training/{config.data.template}/{experiment_name}/{config.model_name}/.hydra/config.yaml")
model_output_dir = config.paths.dir_ModelOutput
model_load_dir = Path(f"{config.paths.dir_SavedModels}/{config.data.template}/{experiment_name}/{config.model_name}/lightning_logs/version_0/checkpoints/")
test_ds_path = f"{config.paths.dir_PreprocessedDatasets}{config.data.template}_test.zarr"
ds = Conditional_Dataset_Zarr_Iterable(test_ds_path, ds_config.template, shuffle_chunks=config.shuffle_chunks,
shuffle_in_chunks=config.shuffle_in_chunks)
conditioning_channels = ds.array_inputs.shape[1] * len(ds.conditioning_timesteps) + ds.array_constants.shape[0]
generated_channels = ds.array_targets.shape[1]
img_size = ds.array_targets.shape[-2:]
print(ml_config)
model_ckpt = [x for x in model_load_dir.iterdir()][0]
if ml_config.experiment.model.loss_fn_name == "MSE_Loss":
loss_fn = torch.nn.functional.mse_loss
elif ml_config.experiment.model.loss_fn_name == "AreaWeighted_MSE_Loss":
lat_grid = ds.data.targets.lat[:]
lon_grid = ds.data.targets.lon[:]
loss_fn = AreaWeightedMSELoss(lat_grid, lon_grid).loss_fn
else:
raise NotImplementedError("Invalid loss function.")
if ml_config.experiment.model.diffusion.sampler_name == "DDPM": # this is the default case
sampler = None
else:
raise NotImplementedError("This sampler has not been implemented.")
with open_dict(ml_config):
ml_config.experiment.model.image_size = img_size
ml_config.experiment.model.generated_channels = generated_channels
ml_config.experiment.model.conditioning_channels = conditioning_channels
restored_model = LatentForecastDiffusion.load_from_checkpoint(model_ckpt, map_location="cpu",
model_config = ml_config.experiment.model,
loss_fn = loss_fn,
sampler = sampler)
dl = DataLoader(ds, batch_size=ml_config.experiment.model.batch_size)
trainer = L.Trainer()
out = []
for i in range(nens):
pred = trainer.predict(restored_model, dl)
pred = torch.cat(pred, dim=0).unsqueeze(dim=0)
out.append(pred)
out = torch.cat(out, dim=0) # to keep compatible with the version that uses ensemble members
print(out.shape)
model_output_dir = os.path.join(model_output_dir, config.data.template, experiment_name, model_name, dir_name)
create_dir(model_output_dir)
# need the view to create axis for
# different ensemble members (although only 1 here).
targets = torch.tensor(ds.data.targets.data[ds.start+ds.lead_time:ds.stop+ds.lead_time], dtype=torch.float).unsqueeze(dim=0)
gen_xr = create_xr_output_variables(
out,
zarr_path=f"{config.paths.dir_PreprocessedDatasets}/{config.data.template}_test.zarr/targets",
config=ds_config,
min_max_file_path=f"{config.paths.dir_PreprocessedDatasets}/{config.data.template}_output_min_max.nc"
)
target_xr = create_xr_output_variables(
targets,
zarr_path=f"{config.paths.dir_PreprocessedDatasets}/{config.data.template}_test.zarr/targets",
config=ds_config,
min_max_file_path=f"{config.paths.dir_PreprocessedDatasets}/{config.data.template}_output_min_max.nc"
)
gen_dir = os.path.join(model_output_dir, "gen.nc")
gen_xr.to_netcdf(gen_dir)
print(f"Generated data written at: {gen_dir}")
target_dir = os.path.join(model_output_dir, "target.nc")
target_xr.to_netcdf(target_dir)
print(f"Target data written at: {target_dir}")
if __name__ == '__main__':
LFD_inference()