forked from THUDM/CogQA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
297 lines (259 loc) · 12.8 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import re
import json
from tqdm import tqdm, trange
import pdb
import random
from collections import namedtuple
import numpy as np
import copy
import traceback
import torch
from torch.optim import Adam
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from pytorch_pretrained_bert.tokenization import whitespace_tokenize, BasicTokenizer, BertTokenizer
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.optimization import BertAdam
from model import BertForMultiHopQuestionAnswering, CognitiveGNN
from utils import warmup_linear, find_start_end_after_tokenized, find_start_end_before_tokenized, bundle_part_to_batch, fuzzy_retrieve, WindowMean, fuzz
class Bundle(object):
"""The structure to contain all data for training.
A flexible class. The properties are defined in FIELDS and dynamically added by capturing variables with the same names at runtime.
"""
pass
FIELDS = ['ids', 'hop_start_weights', 'hop_end_weights', 'ans_start_weights', 'ans_end_weights', 'segment_ids', 'sep_positions',
'additional_nodes', 'adj', 'answer_id', 'question_type', '_id']
# Judge question type with interrogative words
GENERAL_WD = ['is', 'are', 'am', 'was', 'were', 'have', 'has', 'had', 'can', 'could',
'shall', 'will', 'should', 'would', 'do', 'does', 'did', 'may', 'might', 'must', 'ought', 'need', 'dare']
GENERAL_WD += [x.capitalize() for x in GENERAL_WD]
GENERAL_WD = re.compile(' |'.join(GENERAL_WD))
def judge_question_type(q : str, G = GENERAL_WD) -> int:
if q.find(' or ') >= 0:
return 2
elif G.match(q):
return 1
else:
return 0
def improve_question_type_and_answer(data, e2i):
'''Improve the result of the judgement of question type in training data with other information.
If the question is a special question(type 0), answer_id is the index of final answer node. Otherwise answer_ids are
the indices of two compared nodes and the result of comparison(0 / 1).
This part is not very important to the overall results, but avoids Runtime Errors in rare cases.
Args:
data (Json): Refined distractor-setting samples.
e2i (dict): entity2index dict.
Returns:
(int, int or (int, int, 0 / 1), string): question_type, answer_id and answer_entity.
'''
question_type = judge_question_type(data['question'])
# fix judgement by answer
if data['answer'] == 'yes' or data['answer'] == 'no':
question_type = 1
answer_entity = data['answer']
else:
# check whether the answer can be extracted as a span
answer_entity = fuzzy_retrieve(data['answer'], e2i, 'distractor', 80)
if answer_entity is None:
raise ValueError('Cannot find answer: {}'.format(data['answer']))
if question_type == 0:
answer_id = e2i[answer_entity]
elif len(data['Q_edge']) != 2:
if question_type == 1:
raise ValueError('There must be 2 entities in "Q_edge" for type 1 question.')
elif question_type == 2: # Judgement error, should be type 0
question_type = 0
answer_id = e2i[answer_entity]
else:
answer_id = [e2i[data['Q_edge'][0][0]], e2i[data['Q_edge'][1][0]]] # compared nodes
if question_type == 1:
answer_id.append(int(data['answer'] == 'yes'))
elif question_type == 2:
if data['answer'] == data['Q_edge'][0][1]:
answer_id.append(0)
elif data['answer'] == data['Q_edge'][1][1]:
answer_id.append(1)
else: # cannot exactly match an option
score = (fuzz.partial_ratio(data['answer'], data['Q_edge'][0][1]), fuzz.partial_ratio(data['answer'], data['Q_edge'][1][1]))
if score[0] < 50 and score[1] < 50:
raise ValueError('There is no exact match in selecting question. answer: {}'.format(data['answer']))
else:
answer_id.append(0 if score[0] > score[1] else 1)
return question_type, answer_id, answer_entity
def convert_question_to_samples_bundle(tokenizer, data: 'Json refined', neg = 2):
'''Make training samples.
Convert distractor-setting samples(question + 10 paragraphs + answer + supporting facts) to bundles.
Args:
tokenizer (BertTokenizer): BERT Tokenizer to transform sentences to a list of word pieces.
data (Json): Refined distractor-setting samples with gold-only cognitive graphs.
neg (int, optional): Defaults to 2. Negative answer nodes to add in every sample.
Raises:
ValueError: Invalid question type.
Returns:
Bundle: A bundle containing 10 separate samples(including gold and negative samples).
'''
context = dict(data['context']) # all the entities in 10 paragraphs
gold_sentences_set = dict([((para, sen), edges) for para, sen, edges in data['supporting_facts']])
e2i, i2e = {}, [] # entity2index, index2entity
for entity, sens in context.items():
e2i[entity] = len(i2e)
i2e.append(entity)
clues = [[]] * len(i2e) # pre-extracted clues
ids, hop_start_weights, hop_end_weights, ans_start_weights, ans_end_weights, segment_ids, sep_positions, additional_nodes = [], [], [], [], [], [], [], []
tokenized_question = ['[CLS]'] + tokenizer.tokenize(data['question']) + ['[SEP]']
# Extract clues for entities in the gold-only cogntive graph
for entity_x, sen, edges in data['supporting_facts']:
for entity_y, _, _, _ in edges:
if entity_y not in e2i: # entity y must be the answer
assert data['answer'] == entity_y
e2i[entity_y] = len(i2e)
i2e.append(entity_y)
clues.append([])
if entity_x != entity_y:
y = e2i[entity_y]
clues[y] = clues[y] + tokenizer.tokenize(context[entity_x][sen]) + ['[SEP]']
question_type, answer_id, answer_entity = improve_question_type_and_answer(data, e2i)
# Construct training samples
for entity, para in context.items():
num_hop, num_ans = 0, 0
tokenized_all = tokenized_question + clues[e2i[entity]]
if len(tokenized_all) > 512: # BERT-base accepts at most 512 tokens
tokenized_all = tokenized_all[:512]
print('CLUES TOO LONG, id: {}'.format(data['_id']))
# initialize a sample for ``entity''
sep_position = []
segment_id = [0] * len(tokenized_all)
hop_start_weight = [0] * len(tokenized_all)
hop_end_weight = [0] * len(tokenized_all)
ans_start_weight = [0] * len(tokenized_all)
ans_end_weight = [0] * len(tokenized_all)
for sen_num, sen in enumerate(para):
tokenized_sen = tokenizer.tokenize(sen) + ['[SEP]']
if len(tokenized_all) + len(tokenized_sen) > 512 or sen_num > 15:
break
tokenized_all += tokenized_sen
segment_id += [sen_num + 1] * len(tokenized_sen)
sep_position.append(len(tokenized_all) - 1)
hs_weight = [0] * len(tokenized_sen)
he_weight = [0] * len(tokenized_sen)
as_weight = [0] * len(tokenized_sen)
ae_weight = [0] * len(tokenized_sen)
if (entity, sen_num) in gold_sentences_set:
edges = gold_sentences_set[(entity, sen_num)]
intervals = find_start_end_after_tokenized(tokenizer, tokenized_sen,
[matched for _, matched, _, _ in edges])
for j, (l, r) in enumerate(intervals):
if edges[j][0] == answer_entity or question_type > 0: # successive node edges[j][0] is answer node
as_weight[l] = ae_weight[r] = 1
num_ans += 1
else: # edges[j][0] is next-hop node
hs_weight[l] = he_weight[r] = 1
num_hop += 1
hop_start_weight += hs_weight
hop_end_weight += he_weight
ans_start_weight += as_weight
ans_end_weight += ae_weight
assert len(tokenized_all) <= 512
# if entity is a negative node, train negative threshold at [CLS]
if 1 not in hop_start_weight:
hop_start_weight[0] = 0.1
if 1 not in ans_start_weight:
ans_start_weight[0] = 0.1
ids.append(tokenizer.convert_tokens_to_ids(tokenized_all))
sep_positions.append(sep_position)
segment_ids.append(segment_id)
hop_start_weights.append(hop_start_weight)
hop_end_weights.append(hop_end_weight)
ans_start_weights.append(ans_start_weight)
ans_end_weights.append(ans_end_weight)
# Construct negative answer nodes for task #2(answer node prediction)
n = len(context)
edges_in_bundle = []
if question_type == 0:
# find all edges and prepare forbidden set(containing answer) for negative sampling
forbidden = set([])
for para, sen, edges in data['supporting_facts']:
for x, matched, l, r in edges:
edges_in_bundle.append((e2i[para], e2i[x]))
if x == answer_entity:
forbidden.add((para, sen))
if answer_entity not in context and answer_entity in e2i:
n += 1
tokenized_all = tokenized_question + clues[e2i[answer_entity]]
if len(tokenized_all) > 512:
tokenized_all = tokenized_all[:512]
print('ANSWER TOO LONG! id: {}'.format(data['_id']))
additional_nodes.append(tokenizer.convert_tokens_to_ids(tokenized_all))
for i in range(neg):
# build negative answer node n+i
father_para = random.choice(list(context.keys()))
father_sen = random.randrange(len(context[father_para]))
if (father_para, father_sen) in forbidden:
father_para = random.choice(list(context.keys()))
father_sen = random.randrange(len(context[father_para]))
if (father_para, father_sen) in forbidden:
neg -= 1
continue
tokenized_all = tokenized_question + tokenizer.tokenize(context[father_para][father_sen]) + ['[SEP]']
if len(tokenized_all) > 512:
tokenized_all = tokenized_all[:512]
print('NEG TOO LONG! id: {}'.format(data['_id']))
additional_nodes.append(tokenizer.convert_tokens_to_ids(tokenized_all))
edges_in_bundle.append((e2i[father_para], n))
n += 1
if question_type >= 1:
for para, sen, edges in data['supporting_facts']:
for x, matched, l, r in edges:
if e2i[para] < n and e2i[x] < n:
edges_in_bundle.append((e2i[para], e2i[x]))
assert n == len(additional_nodes) + len(context)
adj = torch.eye(n) * 2
for x, y in edges_in_bundle:
adj[x, y] = 1
adj /= torch.sum(adj, dim=0, keepdim=True)
_id = data['_id']
ret = Bundle()
for field in FIELDS:
setattr(ret, field, eval(field))
return ret
def homebrew_data_loader(bundles, mode : 'bundle or tensors' = 'tensors', batch_size = 8):
'''Return a generator like DataLoader in pytorch
Different data are fed in task #1 and #2. In task #1, steps for different entities are decoupled into 10 samples
and can be randomly shuffled. But in task #2, inputs must be whole graphs.
Args:
bundles (list): List of bundles for questions.
mode (string, optional): Defaults to 'tensors'. 'tensors' represents dataloader for task #1,
'bundle' represents dataloader for task #2.
batch_size (int, optional): Defaults to 8.
Raises:
ValueError: Invalid mode
Returns:
(int, Generator): number of batches and a generator to generate batches.
'''
if mode == 'bundle':
random.shuffle(bundles)
def gen():
for bundle in bundles:
yield bundle
return len(bundles), gen()
elif mode == 'tensors':
all_bundle = Bundle()
for field in FIELDS[:7]:
t = []
setattr(all_bundle, field, t)
for bundle in bundles:
t.extend(getattr(bundle, field))
n = len(t)
# random shuffle
orders = np.random.permutation(n)
for field in FIELDS[:7]:
t = getattr(all_bundle, field)
setattr(all_bundle, field, [t[x] for x in orders])
num_batch = (n - 1) // batch_size + 1
def gen():
for batch_num in range(num_batch):
l, r = batch_num * batch_size, min((batch_num + 1) * batch_size, n)
yield bundle_part_to_batch(all_bundle, l, r)
return num_batch, gen()
else:
raise ValueError('mode must be "bundle" or "tensors"!')