-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideocap.py
87 lines (80 loc) · 2.99 KB
/
videocap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import cv2
import numpy as np
import time
from matplotlib import pyplot
predicting=False
writing=False
depth=False
net=sess=input_node=predictDepth=(None,None,None,None)
if depth:
from depth_predict import predict
predictDepth=predict.predict
net,sess,input_node=predict.init_net("depth_predict\\NYU_FCRN-checkpoint\\NYU_FCRN.ckpt")
width=80
height=60
if predicting:
from model_example import make_model
model = make_model(input_shape=(width,height) + (1,), num_classes=2)
model.load_weights("save_at_10.h5")
print(model.input_shape)
vc=cv2.VideoCapture(0)
cv2.namedWindow("raw")
if vc.isOpened(): # try to get the first frame
rval, frame = vc.read()
else:
rval = False
def capture(directory):
while True:
rval, frame = vc.read()
#frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#fgmask = backsub.apply(frame)
cv2.imshow("raw", frame)
if depth:
frame = cv2.resize(frame,(304,228),interpolation=cv2.INTER_AREA)
gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
frame=np.expand_dims(frame,0)
print(frame.shape)
prediction = predictDepth(net,sess,input_node,frame)[0,:,:,0]#128x160
#print(prediction[0][0])
#prediction=(prediction/256).astype(np.uint8)
prediction=cv2.resize(prediction,(304,228),interpolation=cv2.INTER_AREA)
prediction = (1/(prediction/np.amin(prediction)))
mask=prediction-0.2#closest values are 1, so anything above 0.5+x is included
mask=np.round(mask)
#frame = np.multiply(gray,prediction)
masked = np.multiply(gray,mask)
#pyplot.imshow(masked)
#pyplot.show()
frame = masked
combined = np.concatenate((np.expand_dims(gray,2), np.expand_dims(masked,2),np.expand_dims(prediction*255,2)),axis=2)
#cv2.imshow("highlighted depth",prediction/255)
cv2.imshow("combined",combined/255)
#cv2.imshow("depthmap",prediction)
print(frame.shape)
gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
print(gray.shape)
gray= cv2.resize(gray,(width,height),interpolation=cv2.INTER_AREA)
print(gray.shape)
cv2.imshow("small",gray)
if writing:
path='data\\{directory}\\img{time}.jpg'.format(time=round(time.time()*1000),directory=directory)
cv2.imwrite(path,frame)
if predicting:
frame=np.expand_dims(frame,axis=2)
frame=np.expand_dims(frame,axis=0)
frame=np.swapaxes(frame,1,2)
final_prediction=model.predict(frame)[0][0]
print(final_prediction)
key = cv2.waitKey(500)
if key == 32 or key == 27 or key == 13: # exit on space or esc or enter
break
while(rval):
key=cv2.waitKey(0)
if key == 13:#enter
capture('bad')
if key == 32:#space
capture('good')
if key == 27: # exit on ESC
break
cv2.destroyWindow("preview")
vc.release()