-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsac.py
376 lines (313 loc) · 16.1 KB
/
sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
from collections import OrderedDict
from core import get_vars
from spinup.utils.logx import EpochLogger
import numpy as np
import tensorflow as tf
import gym
import time
from tensorflow.contrib.staging import StagingArea
import logger
from util import (
import_function, store_args, flatten_grads, transitions_in_episode_batch)
from normalizer import Normalizer
from replay_buffer import ReplayBuffer
from common.mpi_adam import MpiAdam
def dims_to_shapes(input_dims):
return {key: tuple([val]) if val > 0 else tuple() for key, val in input_dims.items()}
class SHER(object):
@store_args
def __init__(self, input_dims, buffer_size, hidden, layers, network_class, polyak, batch_size,
Q_lr, pi_lr, norm_eps, norm_clip, max_u, action_l2, clip_obs, scope, T,
rollout_batch_size, subtract_goals, relative_goals, clip_pos_returns, clip_return,
sample_transitions, gamma, alpha, reuse=False, **kwargs):
"""Implementation of DDPG that is used in combination with Hindsight Experience Replay (HER).
Args:
input_dims (dict of ints): dimensions for the observation (o), the goal (g), and the
actions (u)
buffer_size (int): number of transitions that are stored in the replay buffer
hidden (int): number of units in the hidden layers
layers (int): number of hidden layers
network_class (str): the network class that should be used (e.g. 'baselines.her.ActorCritic')
polyak (float): coefficient for Polyak-averaging of the target network
batch_size (int): batch size for training
Q_lr (float): learning rate for the Q (critic) network
pi_lr (float): learning rate for the pi (actor) network
norm_eps (float): a small value used in the normalizer to avoid numerical instabilities
norm_clip (float): normalized inputs are clipped to be in [-norm_clip, norm_clip]
max_u (float): maximum action magnitude, i.e. actions are in [-max_u, max_u]
action_l2 (float): coefficient for L2 penalty on the actions
clip_obs (float): clip observations before normalization to be in [-clip_obs, clip_obs]
scope (str): the scope used for the TensorFlow graph
T (int): the time horizon for rollouts
rollout_batch_size (int): number of parallel rollouts per DDPG agent
subtract_goals (function): function that subtracts goals from each other
relative_goals (boolean): whether or not relative goals should be fed into the network
clip_pos_returns (boolean): whether or not positive returns should be clipped
clip_return (float): clip returns to be in [-clip_return, clip_return]
sample_transitions (function) function that samples from the replay buffer
gamma (float): gamma used for Q learning updates
reuse (boolean): whether or not the networks should be reused
"""
if self.clip_return is None:
self.clip_return = np.inf
self.soft_actor_critic = import_function(self.network_class)
input_shapes = dims_to_shapes(self.input_dims)
self.dimo = self.input_dims['o']
self.dimg = self.input_dims['g']
self.dimu = self.input_dims['u']
# Prepare staging area for feeding data to the model.
stage_shapes = OrderedDict()
for key in sorted(self.input_dims.keys()):
if key.startswith('info_'):
continue
stage_shapes[key] = (None, *input_shapes[key])
for key in ['o', 'g']:
stage_shapes[key + '_2'] = stage_shapes[key]
stage_shapes['r'] = (None,)
self.stage_shapes = stage_shapes
# Create network.
with tf.variable_scope(self.scope):
self.staging_tf = StagingArea(
dtypes=[tf.float32 for _ in self.stage_shapes.keys()],
shapes=list(self.stage_shapes.values()))
self.buffer_ph_tf = [
tf.placeholder(tf.float32, shape=shape) for shape in self.stage_shapes.values()]
self.stage_op = self.staging_tf.put(self.buffer_ph_tf)
self._create_network(reuse=reuse)
# Configure the replay buffer.
buffer_shapes = {key: (self.T if key != 'o' else self.T+1, *input_shapes[key])
for key, val in input_shapes.items()}
buffer_shapes['g'] = (buffer_shapes['g'][0], self.dimg)
buffer_shapes['ag'] = (self.T+1, self.dimg)
buffer_size = (self.buffer_size // self.rollout_batch_size) * self.rollout_batch_size
self.buffer = ReplayBuffer(buffer_shapes, buffer_size, self.T, self.sample_transitions)
def _random_action(self, n):
return np.random.uniform(low=-self.max_u, high=self.max_u, size=(n, self.dimu))
def _preprocess_og(self, o, ag, g):
if self.relative_goals:
g_shape = g.shape
g = g.reshape(-1, self.dimg)
ag = ag.reshape(-1, self.dimg)
g = self.subtract_goals(g, ag)
g = g.reshape(*g_shape)
o = np.clip(o, -self.clip_obs, self.clip_obs)
g = np.clip(g, -self.clip_obs, self.clip_obs)
return o, g
def get_actions(self, o, ag, g, noise_eps=0.3, random_eps=0.05, use_target_net=False,
compute_Q=False):
o, g = self._preprocess_og(o, ag, g)
policy = self.target if use_target_net else self.main
# values to compute
vals = [policy.pi_tf]
if compute_Q:
vals += [policy.q1_pi_tf]
# vals += [self.pi_loss_tf]
# feed
feed = {
policy.o_tf: o.reshape(-1, self.dimo),
policy.g_tf: g.reshape(-1, self.dimg),
policy.u_tf: np.zeros((o.size // self.dimo, self.dimu), dtype=np.float32)
}
ret = self.sess.run(vals, feed_dict=feed)
# action postprocessing
u = ret[0]
# noise = noise_eps * self.max_u * np.random.randn(*u.shape) #No Gaussian Noise
# u += noise
u = np.clip(u, -self.max_u, self.max_u)
u += np.random.binomial(1, random_eps, u.shape[0]).reshape(-1, 1) * (self._random_action(u.shape[0]) - u) # eps-greedy
if u.shape[0] == 1:
u = u[0]
u = u.copy()
ret[0] = u
if len(ret) == 1:
return ret[0]
else:
return ret
def store_episode(self, episode_batch, update_stats=True):
"""
episode_batch: array of batch_size x (T or T+1) x dim_key
'o' is of size T+1, others are of size T
"""
self.buffer.store_episode(episode_batch)
if update_stats:
# add transitions to normalizer
episode_batch['o_2'] = episode_batch['o'][:, 1:, :]
episode_batch['ag_2'] = episode_batch['ag'][:, 1:, :]
num_normalizing_transitions = transitions_in_episode_batch(episode_batch)
transitions = self.sample_transitions(episode_batch, num_normalizing_transitions)
o, o_2, g, ag = transitions['o'], transitions['o_2'], transitions['g'], transitions['ag']
transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g)
# No need to preprocess the o_2 and g_2 since this is only used for stats
self.o_stats.update(transitions['o'])
self.g_stats.update(transitions['g'])
self.o_stats.recompute_stats()
self.g_stats.recompute_stats()
def get_current_buffer_size(self):
return self.buffer.get_current_size()
def _sync_optimizers(self):
self.V_adam.sync()
self.pi_adam.sync()
def _grads(self):
# Avoid feed_dict here for performance!
critic_loss, actor_loss, V_grad, pi_grad = self.sess.run([
self.value_loss_tf,
self.pi_loss_tf,
self.V_grad_tf,
self.pi_grad_tf
])
return critic_loss, actor_loss, V_grad, pi_grad
def _update(self, V_grad, pi_grad):
self.V_adam.update(V_grad, self.Q_lr)
self.pi_adam.update(pi_grad, self.pi_lr)
def sample_batch(self):
transitions = self.buffer.sample(self.batch_size)
o, o_2, g = transitions['o'], transitions['o_2'], transitions['g']
ag, ag_2 = transitions['ag'], transitions['ag_2']
transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g)
transitions['o_2'], transitions['g_2'] = self._preprocess_og(o_2, ag_2, g)
transitions_batch = [transitions[key] for key in self.stage_shapes.keys()]
return transitions_batch
def stage_batch(self, batch=None):
if batch is None:
batch = self.sample_batch()
assert len(self.buffer_ph_tf) == len(batch)
self.sess.run(self.stage_op, feed_dict=dict(zip(self.buffer_ph_tf, batch)))
def train(self, stage=True):
if stage:
self.stage_batch()
critic_loss, actor_loss, V_grad, pi_grad = self._grads()
self._update(V_grad, pi_grad)
return critic_loss, actor_loss
def _init_target_net(self):
self.sess.run(self.init_target_net_op)
def update_target_net(self):
self.sess.run(self.update_target_net_op)
def clear_buffer(self):
self.buffer.clear_buffer()
def _vars(self, scope):
res = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.scope + '/' + scope)
# print(self.scope + '/' + scope)
assert len(res) > 0
# assert len(res) > 0 ,self.scope + '/' + scope+";;;{}".format(res)
return res
def get_vars(scope): #add
return [x for x in tf.global_variables() if scope in x.name]
def _global_vars(self, scope):
res = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.scope + '/' + scope)
return res
def _create_network(self, reuse=False):
logger.info("Creating a SAC agent with action space %d x %s..." % (self.dimu, self.max_u))
gamma = self.gamma
alpha = self.alpha
polyak = self.polyak
self.sess = tf.get_default_session()
# writer = tf.train.SummaryWriter('./tflog',tf.get_default_graph())
if self.sess is None:
self.sess = tf.InteractiveSession()
# running averages
with tf.variable_scope('o_stats') as vs:
if reuse:
vs.reuse_variables()
self.o_stats = Normalizer(self.dimo, self.norm_eps, self.norm_clip, sess=self.sess)
with tf.variable_scope('g_stats') as vs:
if reuse:
vs.reuse_variables()
self.g_stats = Normalizer(self.dimg, self.norm_eps, self.norm_clip, sess=self.sess)
# mini-batch sampling.
batch = self.staging_tf.get()
batch_tf = OrderedDict([(key, batch[i])
for i, key in enumerate(self.stage_shapes.keys())])
batch_tf['r'] = tf.reshape(batch_tf['r'], [-1, 1])
# networks
with tf.variable_scope('main') as vs:
if reuse:
vs.reuse_variables()
self.main = self.soft_actor_critic(batch_tf, net_type='main', **self.__dict__)
vs.reuse_variables()
with tf.variable_scope('target') as vs:
if reuse:
vs.reuse_variables()
target_batch_tf = batch_tf.copy()
target_batch_tf['o'] = batch_tf['o_2']
target_batch_tf['g'] = batch_tf['g_2']
self.target = self.soft_actor_critic(
target_batch_tf, net_type='target', **self.__dict__)
v_targ_tf = self.target.v_tf
vs.reuse_variables()
assert len(self._vars("main")) == len(self._vars("target"))
# loss functions
min_q_pi_tf = tf.minimum(self.main.q1_pi_tf, self.main.q2_pi_tf)
clip_range = (-self.clip_return, 0. if self.clip_pos_returns else np.inf)
target_tf = tf.clip_by_value(batch_tf['r'] + gamma * v_targ_tf, *clip_range)
q_backup_tf = tf.stop_gradient(target_tf)
# q_backup_tf = tf.stop_gradient(batch_tf['r'] + gamma * v_targ_tf)
v_backup_tf = tf.stop_gradient(min_q_pi_tf - alpha * self.main.logp_pi_tf)
self.pi_loss_tf = tf.reduce_mean(alpha * self.main.logp_pi_tf - self.main.q1_pi_tf)
q1_loss_tf = 0.5 * tf.reduce_mean((q_backup_tf - self.main.q1_tf) ** 2)
q2_loss_tf = 0.5 * tf.reduce_mean((q_backup_tf - self.main.q2_tf) ** 2)
v_loss_tf = 0.5 * tf.reduce_mean((v_backup_tf - self.main.v_tf) ** 2)
self.value_loss_tf = q1_loss_tf + q2_loss_tf + v_loss_tf
value_params = get_vars('main/q') + get_vars('main/v')
pi_params = get_vars('main/pi')
# self.Q_loss_tf = q1_loss_tf
# self.pi_loss_tf = -tf.reduce_mean(self.main.q1_pi_tf)
# self.pi_loss_tf += self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u))
V_grads_tf = tf.gradients(self.value_loss_tf, value_params)
# pi_grads_tf = tf.gradients(self.pi_loss_tf, self._vars('main/pi'))
pi_grads_tf = tf.gradients(self.pi_loss_tf, pi_params)
# assert len(value_pa rams) == len(V_grads_tf)
# assert len(self._vars('main/pi')) == len(pi_grads_tf)
self.V_grads_vars_tf = zip(V_grads_tf, value_params)
self.pi_grads_vars_tf = zip(pi_grads_tf, pi_params)
self.V_grad_tf = flatten_grads(grads=V_grads_tf, var_list=value_params)
self.pi_grad_tf = flatten_grads(grads=pi_grads_tf, var_list=pi_params)
# optimizers
self.V_adam = MpiAdam(value_params, scale_grad_by_procs=False)
self.pi_adam = MpiAdam(pi_params, scale_grad_by_procs=False)
# polyak averaging
self.main_vars = self._vars('main/pi') + self._vars('main/q1') + self._vars('main/q2') +self._vars('main/v')
self.target_vars = self._vars('target/pi') + self._vars('target/q1') + self._vars('target/q2') + self._vars('target/v')
self.stats_vars = self._global_vars('o_stats') + self._global_vars('g_stats')
self.init_target_net_op = list(
map(lambda v: v[0].assign(v[1]), zip(self.target_vars, self.main_vars)))
self.update_target_net_op = list(
map(lambda v: v[0].assign(polyak * v[0] + (1. - polyak) * v[1]), zip(self.target_vars, self.main_vars)))
# initialize all variables
tf.variables_initializer(self._global_vars('')).run()
self._sync_optimizers()
self._init_target_net()
# writer.close()
def logs(self, prefix=''):
logs = []
logs += [('stats_o/mean', np.mean(self.sess.run([self.o_stats.mean])))]
logs += [('stats_o/std', np.mean(self.sess.run([self.o_stats.std])))]
logs += [('stats_g/mean', np.mean(self.sess.run([self.g_stats.mean])))]
logs += [('stats_g/std', np.mean(self.sess.run([self.g_stats.std])))]
if prefix is not '' and not prefix.endswith('/'):
return [(prefix + '/' + key, val) for key, val in logs]
else:
return logs
def __getstate__(self):
"""Our policies can be loaded from pkl, but after unpickling you cannot continue training.
"""
excluded_subnames = ['_tf', '_op', '_vars', '_adam', 'buffer', 'sess', '_stats',
'main', 'target', 'lock', 'env', 'sample_transitions',
'stage_shapes', 'soft_actor_critic']
state = {k: v for k, v in self.__dict__.items() if all([not subname in k for subname in excluded_subnames])}
state['buffer_size'] = self.buffer_size
state['tf'] = self.sess.run([x for x in self._global_vars('') if 'buffer' not in x.name])
return state
def __setstate__(self, state):
if 'sample_transitions' not in state:
# We don't need this for playing the policy.
state['sample_transitions'] = None
self.__init__(**state)
# set up stats (they are overwritten in __init__)
for k, v in state.items():
if k[-6:] == '_stats':
self.__dict__[k] = v
# load TF variables
vars = [x for x in self._global_vars('') if 'buffer' not in x.name]
assert(len(vars) == len(state["tf"]))
node = [tf.assign(var, val) for var, val in zip(vars, state["tf"])]
self.sess.run(node)