-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathtest_lr_warm_start.py
100 lines (88 loc) · 3.89 KB
/
test_lr_warm_start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from fate_client.pipeline import FateFlowPipeline
from fate_client.pipeline.components.fate import Evaluation, Reader
from fate_client.pipeline.components.fate import SSHELR, PSI
from fate_client.pipeline.utils import test_utils
def main(config="../config.yaml", namespace=""):
if isinstance(config, str):
config = test_utils.load_job_config(config)
parties = config.parties
guest = parties.guest[0]
host = parties.host[0]
pipeline = FateFlowPipeline().set_parties(guest=guest, host=host)
if config.task_cores:
pipeline.conf.set("task_cores", config.task_cores)
if config.timeout:
pipeline.conf.set("timeout", config.timeout)
reader_0 = Reader("reader_0")
reader_0.guest.task_parameters(
namespace=f"experiment{namespace}",
name="breast_hetero_guest"
)
reader_0.hosts[0].task_parameters(
namespace=f"experiment{namespace}",
name="breast_hetero_host"
)
psi_0 = PSI("psi_0", input_data=reader_0.outputs["output_data"])
lr_0 = SSHELR("lr_0",
epochs=4,
batch_size=300,
learning_rate=0.15,
init_param={"fit_intercept": True, "method": "zeros"},
train_data=psi_0.outputs["output_data"],
reveal_every_epoch=False,
early_stop="diff",
reveal_loss_freq=1,
)
lr_1 = SSHELR("lr_1", train_data=psi_0.outputs["output_data"],
warm_start_model=lr_0.outputs["output_model"],
epochs=2,
batch_size=300,
learning_rate=0.15,
reveal_every_epoch=False,
early_stop="diff",
reveal_loss_freq=1,
)
lr_2 = SSHELR("lr_2", epochs=6,
batch_size=300,
learning_rate=0.15,
init_param={"fit_intercept": True, "method": "zeros"},
train_data=psi_0.outputs["output_data"],
reveal_every_epoch=False,
early_stop="diff",
reveal_loss_freq=1,
)
evaluation_0 = Evaluation("evaluation_0",
runtime_parties=dict(guest=guest),
default_eval_setting="binary",
input_datas=[lr_1.outputs["train_output_data"], lr_2.outputs["train_output_data"]])
pipeline.add_tasks([reader_0, psi_0, lr_0, lr_1, lr_2, evaluation_0])
pipeline.compile()
# print(pipeline.get_dag())
pipeline.fit()
# print(f"lr_1 model: {pipeline.get_task_info('lr_1').get_output_model()}")
# print(f"train lr_1 data: {pipeline.get_task_info('lr_1').get_output_data()}")
# print(f"lr_2 model: {pipeline.get_task_info('lr_2').get_output_model()}")
# print(f"train lr_2 data: {pipeline.get_task_info('lr_2').get_output_data()}")
if __name__ == "__main__":
parser = argparse.ArgumentParser("PIPELINE DEMO")
parser.add_argument("--config", type=str, default="../config.yaml",
help="config file")
parser.add_argument("--namespace", type=str, default="",
help="namespace for data stored in FATE")
args = parser.parse_args()
main(config=args.config, namespace=args.namespace)