-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_resnet.py
523 lines (442 loc) · 22.3 KB
/
main_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import argparse
import PIL
import os
import time
import logging
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import models
from torch.autograd import Variable
from data import get_dataset, get_num_classes
from preprocess import get_transform
from utils import *
from datetime import datetime
from ast import literal_eval
import json
from torchvision.utils import save_image
import quantization
from quantization.quant_auto import memory_driven_quant
from tqdm import tqdm
import nemo
import warnings
import math
import copy
import collections
import numpy as np
from torch.utils.tensorboard import SummaryWriter
# filter out ImageNet EXIF warnings
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
warnings.filterwarnings("ignore", "Metadata Warning", UserWarning)
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
model_names.extend(["mobilenetv3_large", "mobilenetv2"])
parser = argparse.ArgumentParser(description='PyTorch ConvNet Training')
parser.add_argument('--results_dir', metavar='RESULTS_DIR', default='./results',
help='results dir')
parser.add_argument('--save', metavar='SAVE', default='',
help='saved folder')
parser.add_argument('--dataset', metavar='DATASET', default='cifar10',
help='dataset name or folder')
# parser.add_argument('--model', '-a', metavar='MODEL', default='vgg_cifar10_binary',
# choices=model_names,
# help='model architecture: ' +
# ' | '.join(model_names) +
# ' (default: alexnet)')
parser.add_argument('--model', '-a', default='mobilenet', type=str)
parser.add_argument('--input_size', type=int, default=None,
help='image input size')
parser.add_argument('--model_config', default='',
help='additional architecture configuration')
parser.add_argument('--type', default='torch.cuda.FloatTensor',
help='type of tensor - e.g torch.cuda.HalfTensor')
parser.add_argument('--gpus', default='0,1,2,3',
help='gpus used for training - e.g 0,1,3')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('--epochs', default=150, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--optimizer', default='SGD', type=str, metavar='OPT',
help='optimizer function used')
parser.add_argument('--lr', '--learning_rate', default=1e-4, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default=None, type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', action='store_true',
help='run model on validation set')
parser.add_argument('--save_check', action='store_true',
help='saving the checkpoint')
parser.add_argument('--terminal', action='store_true')
parser.add_argument('--use_sawb', action='store_true')
parser.add_argument('--pure-export', action='store_true')
# quantization parameters
parser.add_argument('--quantize', action='store_true',
help='quantize the network')
parser.add_argument('--type_quant', default=None,
help='Type of binarization process')
parser.add_argument('--weight_bits', default=1,
help='Number of bits for the weights')
parser.add_argument('--activ_bits', default=1,
help='Number of bits for the activations')
parser.add_argument('--initial_folding', default=False, action='store_true',
help='Fold BNs into Linear layers before training')
parser.add_argument('--initial_equalization', default=False, action='store_true',
help='Perform Linear layer weight equalization before training')
parser.add_argument('--quant_add_config', default='', type=str,
help='Additional config of per-layer quantization')
# mobilenet params
parser.add_argument('--mobilenet_width', default=1.0, type=float,
help='Mobilenet Width Muliplier')
parser.add_argument('--mobilenet_input', default=224, type=int,
help='Mobilenet input resolution ')
# mixed-precision params
parser.add_argument('--mem_constraint', default='', type=str,
help='Memory constraints for automatic bitwidth quantization')
parser.add_argument('--mixed_prec_quant', default='MixPL', type=str,
help='Type of quantization for mixed-precision low bitwidth: MixPL | MixPC')
parser.add_argument('--mixed_prec_dict', default=None, type=str)
parser.add_argument('--suffix', default='', type=str)
parser.add_argument('--writer_freq', default=10)
parser.add_argument('--test_precision_dicts', action='store_true')
__global_ave_grads = {}
__global_max_grads = {}
def reset_grad_flow(net, __global_ave_grads, __global_max_grads):
for n, p in net.named_parameters():
__global_ave_grads[n] = []
__global_max_grads[n] = []
def save_grad_flow(net):
'''Plots the gradients flowing through different layers in the net during training.
Can be used for checking for possible gradient vanishing / exploding problems.
Usage: Plug this function in Trainer class after loss.backwards() as
"plot_grad_flow(self.model.named_parameters())" to visualize the gradient flow'''
named_parameters = net.named_parameters()
ave_grads = []
max_grads= []
layers = []
for n, p in named_parameters:
if(p.requires_grad) and ("bias" not in n):
layers.append(n)
if hasattr(p, 'grad'):
if not p.grad is None:
ave_grads.append(p.grad.abs().mean().item())
max_grads.append(p.grad.abs().max().item())
try:
__global_ave_grads[n].extend(ave_grads)
__global_max_grads[n].extend(max_grads)
except KeyError:
__global_ave_grads[n] = ave_grads
__global_max_grads[n] = max_grads
def main():
global args, best_prec1
best_prec1 = 0
args = parser.parse_args()
weight_bits = int(args.weight_bits)
activ_bits = int(args.activ_bits)
if args.save is '':
args.save = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
save_path = os.path.join(args.results_dir, args.save)
if not os.path.exists(save_path):
os.makedirs(save_path)
setup_logging(os.path.join(save_path, 'log.txt'))
results_file = os.path.join(save_path, 'results.%s')
results = ResultsLog(results_file % 'csv', results_file % 'html')
logging.info("saving to %s", save_path)
logging.debug("run arguments: %s", args)
writer = SummaryWriter()
if 'cuda' in args.type:
args.gpus = [int(i) for i in args.gpus.split(',')]
print('Selected GPUs: ', args.gpus)
# torch.cuda.set_device(args.gpus[0])
cudnn.benchmark = True
else:
args.gpus = None
# create model
logging.info("creating model %s", args.model)
if args.model == 'mobilenet':
model = models.__dict__[args.model]
model = model(**model_config)
elif args.model == 'mobilenetv2':
model = torch.hub.load('pytorch/vision:v0.6.0', 'mobilenet_v2', pretrained=True)
elif args.model == 'resnet18':
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True)
else: #if args.model == 'mobilenet_v3':
model = models.mobilenetv3_large(width_mult=float(args.mobilenet_width))
model.load_state_dict(torch.load("models/mobilenet_v3/mobilenetv3-large-0.75-9632d2a8.pth"))
nClasses = get_num_classes(args.dataset)
model_config = {'input_size': args.input_size, 'dataset': args.dataset, 'num_classes': nClasses, \
'width_mult': float(args.mobilenet_width), 'input_dim': float(args.mobilenet_input) }
if args.model_config is not '':
model_config = dict(model_config, **literal_eval(args.model_config))
logging.info("created model with configuration: %s", model_config)
print(model)
num_parameters = sum([l.nelement() for l in model.parameters()])
logging.info("number of parameters: %d", num_parameters)
# Data loading code
default_transform = {
'train': get_transform(args.dataset,
input_size=args.input_size, augment=True),
'eval': get_transform(args.dataset,
input_size=args.input_size, augment=False)
}
transform = getattr(model, 'input_transform', default_transform)
regime = getattr(model, 'regime', {0: {'optimizer': args.optimizer,
'lr': args.lr,
'momentum': args.momentum,
'weight_decay': args.weight_decay}})
print(transform)
# define loss function (criterion) and optimizer
criterion = getattr(model, 'criterion', nn.CrossEntropyLoss)()
criterion.type(args.type)
val_data = get_dataset(args.dataset, 'val', transform['eval'])
val_loader = torch.utils.data.DataLoader(
val_data,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
fast_val_loader = torch.utils.data.DataLoader(
val_data,
batch_size=args.batch_size,
num_workers=args.workers, pin_memory=True,
sampler=torch.utils.data.RandomSampler(val_data, replacement=True, num_samples=1000)
)
train_data = get_dataset(args.dataset, 'train', transform['train'])
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True
)
fast_train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size,
num_workers=args.workers, pin_memory=True,
sampler=torch.utils.data.RandomSampler(val_data, replacement=True, num_samples=100000)
)
#define optimizer
params_dict = dict(model.named_parameters())
params = []
for key, value in params_dict.items():
if 'alpha' in key or 'beta' in key:
params += [{'params':value, 'weight_decay': 1e-4}]
else:
params += [{'params':value, 'weight_decay': 1e-5}]
mixed_prec_dict = None
if args.mixed_prec_dict is not None:
mixed_prec_dict = nemo.utils.precision_dict_from_json(args.mixed_prec_dict)
print("Load mixed precision dict from outside")
elif args.mem_constraint is not '':
mem_contraints = json.loads(args.mem_constraint)
print('This is the memory constraint:', mem_contraints )
if mem_contraints is not None:
x_test = torch.Tensor(1,3,224,224)
mixed_prec_dict = memory_driven_quant(model, x_test, mem_contraints[0], mem_contraints[1], args.mixed_prec_quant, use_sawb=args.use_sawb)
#multi gpus
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model).cuda()
else:
model = model.cuda()
# mobilenet_width = float(args.mobilenet_width)
# mobilenet_width_s = args.mobilenet_width
# mobilenet_input = int(args.mobilenet_input)
if args.resume is None:
val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion, 0, None)
print("[NEMO] Full-precision model: top-1=%.2f top-5=%.2f" % (val_prec1, val_prec5))
if args.quantize:
# transform the model in a NEMO FakeQuantized representation
model = nemo.transform.quantize_pact(model, dummy_input=torch.randn((1,3,224,224)).to('cuda'))
if args.resume is not None:
checkpoint_file = args.resume
if os.path.isfile(checkpoint_file):
logging.info("loading checkpoint '%s'", args.resume)
checkpoint_loaded = torch.load(checkpoint_file)
checkpoint = checkpoint_loaded['state_dict']
model.load_state_dict(checkpoint, strict=True)
prec_dict = checkpoint_loaded.get('precision')
else:
logging.error("no checkpoint found at '%s'", args.resume)
import sys; sys.exit(1)
if args.resume is None:
print("[NEMO] Model calibration")
model.change_precision(bits=20)
model.reset_alpha_weights()
if args.initial_folding:
model.fold_bn()
# use DFQ for weight equalization
if args.initial_equalization:
model.equalize_weights_dfq()
elif args.initial_equalization:
model.equalize_weights_lsq(verbose=True)
model.reset_alpha_weights()
# model.reset_alpha_weights(use_method='dyn_range', dyn_range_cutoff=0.05, verbose=True)
# calibrate after equalization
with model.statistics_act():
val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion, 0, None)
model.reset_alpha_act()
val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion, 0, None)
print("[NEMO] 20-bit calibrated model: top-1=%.2f top-5=%.2f" % (val_prec1, val_prec5))
nemo.utils.save_checkpoint(model, None, 0, acc=val_prec1, checkpoint_name='resnet18_calibrated', checkpoint_suffix=args.suffix)
model.change_precision(bits=activ_bits)
model.change_precision(bits=weight_bits, scale_activations=False)
# init weight clipping parameters to their reset value and disable their gradient
model.reset_alpha_weights()
if args.use_sawb:
model.disable_grad_sawb()
model.weight_clip_sawb()
mixed_prec_dict_all = model.export_precision()
mixed_prec_dict_all['relu']['x_bits'] = 2
mixed_prec_dict_all['layer1.0.relu']['x_bits'] = 4
mixed_prec_dict_all['layer3.1.conv1']['W_bits'] = 4
mixed_prec_dict_all['layer3.1.conv2']['W_bits'] = 4
mixed_prec_dict_all['layer4.0.conv1']['W_bits'] = 2
mixed_prec_dict_all['layer4.0.conv2']['W_bits'] = 2
mixed_prec_dict_all['layer4.1.conv1']['W_bits'] = 2
mixed_prec_dict_all['layer4.1.conv2']['W_bits'] = 2
model.change_precision(bits=1, min_prec_dict=mixed_prec_dict_all)
else:
print("[NEMO] Not calibrating model, as it is pretrained")
model.change_precision(bits=1, min_prec_dict=prec_dict)
optimizer = torch.optim.Adam([
{ 'params': model.get_nonclip_parameters(), 'lr': args.lr, 'weight_decay': 1e-5 },
{ 'params': model.get_clip_parameters(), 'lr': args.lr, 'weight_decay': 0.001 },
])
reset_grad_flow(model, __global_ave_grads, __global_max_grads)
for epoch in range(args.start_epoch, args.epochs):
# optimizer = adjust_optimizer(optimizer, epoch, regime)
# train for one epoch
train_loss, train_prec1, train_prec5 = train(train_loader, model, criterion, epoch, optimizer, freeze_bn=True if epoch>0 else False, absorb_bn=True if epoch==0 else False, writer=writer)
val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion, epoch)
writer.add_scalar('Loss/val', val_loss, epoch*len(train_loader))
writer.add_scalar('Accuracy/val', val_prec1, epoch*len(train_loader))
# remember best prec@1 and save checkpoint
is_best = val_prec1 > best_prec1
best_prec1 = max(val_prec1, best_prec1)
#save_model
if args.save_check:
nemo.utils.save_checkpoint(model, optimizer, 0, acc=val_prec1, checkpoint_name='resnet18%s_checkpoint' % ("_mixed" if mixed_prec_dict is not None else ""), checkpoint_suffix=args.suffix)
if is_best:
nemo.utils.save_checkpoint(model, optimizer, 0, acc=val_prec1, checkpoint_name='resnet18%s_best' % ("_mixed" if mixed_prec_dict is not None else ""), checkpoint_suffix=args.suffix)
logging.info('\n Epoch: {0}\t'
'Training Loss {train_loss:.4f} \t'
'Training Prec@1 {train_prec1:.3f} \t'
'Training Prec@5 {train_prec5:.3f} \t'
'Validation Loss {val_loss:.4f} \t'
'Validation Prec@1 {val_prec1:.3f} \t'
'Validation Prec@5 {val_prec5:.3f} \t'
.format(epoch + 1, train_loss=train_loss, val_loss=val_loss,
train_prec1=train_prec1, val_prec1=val_prec1,
train_prec5=train_prec5, val_prec5=val_prec5))
results.add(epoch=epoch + 1, train_loss=train_loss, val_loss=val_loss,
train_error1=100 - train_prec1, val_error1=100 - val_prec1,
train_error5=100 - train_prec5, val_error5=100 - val_prec5)
results.save()
def forward(data_loader, model, criterion, epoch=0, training=True, optimizer=None, quantizer=None, verbose=True, input_bias=0.0, eps_in=None, mode='fq', shorten=None, writer=None):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# apply transofrms at the begininng of each epoch
print('Training: ',training )
# input quantization
if mode=='fq': # FQ
scale_factor = 1.
div_factor = 1.
elif mode=='qd': # QD
scale_factor = 1./eps_in
div_factor = eps_in
else: # ID
scale_factor = 1./eps_in
div_factor = 1.
if shorten is not None:
length = shorten
else:
length = len(data_loader)
with tqdm(total=length,
desc='Epoch #{}'.format(epoch),
disable=not verbose) as t:
for i,(inputs,target) in enumerate(data_loader):
# measure data loading time
if i==length:
break
data_time.update(time.time() - end)
if args.gpus is not None:
target = target.to('cuda')
# target = target.cuda(async=True)
with torch.no_grad():
if mode=='fq':
input_var = (inputs.to('cuda') + input_bias)
else:
input_var = (inputs.to('cuda') + input_bias) * scale_factor
# if mode=='qd' or mode=='id':
input_var = torch.round(input_var + 0.5) * div_factor
target_var = target
if training:
try:
if not args.use_sawb:
model.reset_alpha_weights()
else:
model.weight_clip_sawb()
except AttributeError:
pass
# compute output
output = model(input_var)
loss = criterion(output, target_var)
if type(output) is list:
output = output[0]
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
if training:
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
save_grad_flow(model)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# write results
if writer is not None:
writer.add_scalar('Loss/train', losses.avg, epoch*len(data_loader) + i)
writer.add_scalar('Accuracy/train', top1.avg, epoch*len(data_loader) + i)
if i % args.writer_freq == 0:
for n,p in model.named_parameters():
writer.add_scalar(f'{n}'+'/avg', np.mean(p.data.detach().cpu().numpy()), epoch*len(data_loader) + i)
writer.add_scalar(f'{n}'+'/avg_grad', np.mean(np.asarray(__global_ave_grads[n])), epoch*len(data_loader) + i)
writer.add_scalar(f'{n}'+'/max_grad', np.max(np.asarray(__global_max_grads[n])), epoch*len(data_loader) + i)
t.set_postfix({'loss': losses.avg, 'top1': top1.avg, 'top5': top5.avg})
t.update(1)
return losses.avg, top1.avg, top5.avg
def train(data_loader, model, criterion, epoch, optimizer, quantizer=None, freeze_bn=True, absorb_bn=False, shorten=None, writer=None):
# switch to train mode
model.train()
if freeze_bn or absorb_bn:
if absorb_bn:
print("Freezing BN statistics, but not disabling BN trained parameter gradients")
else:
print("Freezing BN statistics and disabling BN trained parameter gradients")
model.freeze_bn(reset_stats=True, disable_grad=freeze_bn and not absorb_bn)
return forward(data_loader, model, criterion, epoch,
training=True, optimizer=optimizer, quantizer=quantizer, shorten=shorten, writer=writer)
def validate(data_loader, model, criterion, epoch, quantizer=None, input_bias=0.0, eps_in=None, integer=False, mode='fq', shorten=None):
# switch to evaluate mode
model.eval()
return forward(data_loader, model, criterion, epoch,
training=False, optimizer=None, quantizer=quantizer, input_bias=input_bias, eps_in=eps_in, mode=mode, shorten=shorten, writer=None)
if __name__ == '__main__':
main()