forked from LionelBenoit/Local-rainfall-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMetropolis_block_likelihood_gibbs.m
332 lines (258 loc) · 9.89 KB
/
Metropolis_block_likelihood_gibbs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
function [V_tot, V_sample]=Metropolis_block_likelihood_gibbs(m0,V_step_walk,M_prior,MeasuredRainTS,size_block,nb_ep_warmup,nb_sample,step, nb_iter_gibbs)
%-----------------------------Prepare data--------------------------
display('Prepare data');
Coord=[];
Rm=[];
nb_ep_mes=length(MeasuredRainTS(1).RainRate);
nb_blocks=floor(nb_ep_mes/size_block);
size_block_coord=length(MeasuredRainTS)*size_block;
ind_Z=0;
for b=1:nb_blocks
for i=1:size_block
for j=1:length(MeasuredRainTS)
ind_Z=ind_Z+1;
Coord=[Coord;[MeasuredRainTS(j).X, MeasuredRainTS(j).Y, MeasuredRainTS(j).t((b-1)*size_block+i)]];
Rm=[Rm;MeasuredRainTS(j).RainRate((b-1)*size_block+i)];
end
end
end
Z_k=Rm;
for i=1:length(Z_k)
if Rm(i)==0
Z_k(i)=abs(-2-m0(7))*rand-2;
end
end
%---------------------------------Initialization-----------------------------------
display('Initialization');
[Sigma_k,inv_Sigma_k,Z_k]=apply_model(m0, Coord, size_block_coord, Rm, Z_k);
[Z_k]=gibbs_update_Z0(m0, Z_k, Rm, inv_Sigma_k, size_block_coord,500);
%--------------------Metropolis inversion (Mosegaard & Tarantola, 1995)---------------
display('Sampling');
V_tot=zeros(nb_ep_warmup+nb_sample,length(m0)+2+1);
V_sample=zeros(nb_sample,length(m0)+length(Z_k));
nb_accept=0;
alpha_covariance=0;
alpha_anamorphosis=0;
q0=ones(length(m0),1);
for i=1: nb_ep_warmup + nb_sample*step
L0=likelihood_tot(Sigma_k, inv_Sigma_k, Z_k, Rm, m0, size_block_coord);
[m1,q1]=random_walk(m0,q0,V_step_walk,M_prior);
[Sigma_p,inv_Sigma_p,Z_p]=apply_model(m1, Coord, size_block_coord, Rm, Z_k);
L1=likelihood_tot(Sigma_p, inv_Sigma_p, Z_p, Rm, m1, size_block_coord);
alpha=exp(L1-L0)*prod(q1)/prod(q0);
if alpha > 1 || rand > 1-alpha
m0=m1;
q0=q1;
Sigma_k=Sigma_p;
inv_Sigma_k=inv_Sigma_p;
Z_k=Z_p;
[Z_k]=gibbs_update_Z0(m0, Z_k, Rm ,inv_Sigma_k, size_block_coord ,nb_iter_gibbs);
nb_accept=nb_accept+1;
end
V_tot(i,:)=[m0, alpha_anamorphosis, alpha_covariance, L1];
if mod(i-nb_ep_warmup,step)==0 && i > nb_ep_warmup
V_sample(floor((i-nb_ep_warmup)/step),:)=[m0, Z_k'];
end
display(strcat('sampling:',num2str(i),'/',num2str(+nb_ep_warmup + nb_sample*step),' Acceptance rate:',num2str(nb_accept/i)));
end
display(strcat('Acceptance rate:',num2str(nb_accept/(nb_ep_warmup + nb_sample*step))));
%-------------------------------Likelihood functions---------------------------------
function [sum_log_likelihood]=likelihood_tot(Sigma, inv_Sigma, Z, Rm, m, size_block_coord)
nb=length(Z)/size_block_coord;
sum_log_likelihood_structure=0;
sum_log_likelihood_anamorphose=0;
for i1=1:nb
Rmb=Rm((i1-1)*size_block_coord+1:i1*size_block_coord);
Zb=Z((i1-1)*size_block_coord+1:i1*size_block_coord);
NI=sum(Rmb>0);
log_likelihood_structure=-0.5*logdet(Sigma)-0.5*Zb'*inv_Sigma*Zb-0.5*NI*log(2*pi);
sum_log_likelihood_structure=sum_log_likelihood_structure+log_likelihood_structure;
log_likelihood_anamorphose=0;
nb_pos_data=0;
for i2=1:size_block_coord
if Rmb(i2)>0.5
L=m(8)*m(9)*Rmb(i2)^(m(9)-1);
log_likelihood_anamorphose=log_likelihood_anamorphose+log(abs(L));
nb_pos_data=nb_pos_data+1;
end
end
sum_log_likelihood_anamorphose=sum_log_likelihood_anamorphose+log_likelihood_anamorphose;
end
sum_log_likelihood=sum_log_likelihood_structure+sum_log_likelihood_anamorphose;
if isinf(sum_log_likelihood)||isnan(sum_log_likelihood)
display('Undefined likelihood!!')
end
end
%----------------------------------Gibbs sampler---------------------------------
function [Z]=gibbs_update_Z0(m, Z, Rm, inv_Sigma,size_block_coord, nb_iter_gibbs)
for i_gibbs=1:nb_iter_gibbs
%initial values
Z0=Z(1:size_block_coord);
Rmb=Rm(1:size_block_coord);
for i2=1:size_block_coord
if Rmb(i2)==0
[ mu_gibbs, sigma_gibbs ] = conditional_normal_sim(inv_Sigma,i2,Z0);
sim_value=mu_gibbs+randn*sigma_gibbs;
it=1;
while sim_value>m(7)
sim_value=mu_gibbs+randn*sigma_gibbs;
it=it+1;
if it>1000
sim_value=Z0(i2);
break
end
end
Z0(i2)=sim_value;
end
end
Z(1:size_block_coord)=Z0;
%final values
Zf=Z(end-size_block_coord+1:end);
Rmb=Rm(end-size_block_coord+1:end);
for i2=1:size_block_coord
if Rmb(i2)==0
[ mu_gibbs, sigma_gibbs ] = conditional_normal_sim(inv_Sigma,i2,Zf);
sim_value=mu_gibbs+randn*sigma_gibbs;
it=1;
while sim_value>m(7)
sim_value=mu_gibbs+randn*sigma_gibbs;
it=it+1;
if it>1000
sim_value=Zf(i2);
break
end
end
Zf(i2)=sim_value;
end
end
Z(end-size_block_coord+1:end)=Zf;
%all non extramal values
for ic=size_block_coord+1:length(Z)-size_block_coord-1
if Rm(ic)==0
ind_ini_Zc=ic-floor(size_block_coord/2);
Zc=Z(ind_ini_Zc:ind_ini_Zc+size_block_coord-1);
[ mu_gibbs, sigma_gibbs ] = conditional_normal_sim(inv_Sigma,floor(size_block_coord/2)+1,Zc);
sim_value=mu_gibbs+randn*sigma_gibbs;
it=1;
while sim_value>m(7) || sim_value<-3
sim_value=mu_gibbs+randn*sigma_gibbs;
it=it+1;
if it>1000
sim_value=Z(ic);
break
end
end
Z(ic)=sim_value;
end
end
end
end
%------------------------------Forward model => for likelihood and gibbs computation------------------
function[Sigma,inv_Sigma,Z]=apply_model(m, Coord, size_block_coord, Rm, Z)
%marginal distribution
for jj=1:length(Rm)
if Rm(jj)>0
Z(jj)=m(8)*( Rm(jj)^m(9) )+m(7);
end
end
%covariance structure
my_coord=Coord(1:size_block_coord,:);
if m(10)==0 && m(11)==0
Coord_Lagrang=[my_coord(:,1), my_coord(:,2), my_coord(:,3)];
else
Coord_Lagrang=[my_coord(:,1)-my_coord(:,3)*m(10)*cos(m(11)*pi/180), my_coord(:,2)-my_coord(:,3)*m(10)*sin(m(11)*pi/180), my_coord(:,3)];
end
V_X=Coord_Lagrang(:,1);
V_Y=Coord_Lagrang(:,2);
V_t=Coord_Lagrang(:,3);
MVX1=repmat(V_X,1,length(V_X));
MVX2=repmat(V_X',length(V_X),1);
clear V_X
MVY1=repmat(V_Y,1,length(V_Y));
MVY2=repmat(V_Y',length(V_Y),1);
clear V_Y
M_ds=sqrt((MVX2-MVX1).^2+(MVY2-MVY1).^2);
clear MVX1
clear MVX2
clear MVY1
clear MVY2
MVt1=repmat(V_t,1,length(V_t));
MVt2=repmat(V_t',length(V_t),1);
clear V_t
M_dt=abs(MVt2-MVt1);
clear MVt1
clear MVt2
to=1;
c=m(1)^(-2*m(2));
a=m(3)^(-2*m(4));
Elem=a.*M_dt.^(2*m(4))+1;
Sigma=1./(Elem.^to).*exp(-c.*(M_ds.^(2.*m(2)))./(Elem.^(m(5).*m(2))));
Sigma=(1-m(6)^2)*Sigma+eye(size_block_coord)*(m(6)^2);
inv_Sigma=inv(Sigma);
end
%--------------------------------------random walk--------------------------------
function [m1,q1]=random_walk(m0,q0,V_step_walk,M_prior)
m1=m0;
q1=q0;
%spatial range
step_walk=V_step_walk(1);
B1=max(M_prior(1,1),m0(1)-step_walk);
B2=min(M_prior(1,2),m0(1)+step_walk);
m1(1)=rand*(B2-B1)+B1;
q1(1)=1/(B2-B1);
%space regularity parameter (smoothness)
step_walk=V_step_walk(2);
B1=max(M_prior(2,1),m0(2)-step_walk);
B2=min(M_prior(2,2),m0(2)+step_walk);
m1(2)=rand*(B2-B1)+B1;
q1(2)=1/(B2-B1);
%temporal range
step_walk=V_step_walk(3);
B1=max(M_prior(3,1),m0(3)-step_walk);
B2=min(M_prior(3,2),m0(3)+step_walk);
m1(3)=rand*(B2-B1)+B1;
q1(3)=1/(B2-B1);
%time regularity parameter (smoothness)
step_walk=V_step_walk(4);
B1=max(M_prior(4,1),m0(4)-step_walk);
B2=min(M_prior(4,2),m0(4)+step_walk);
m1(4)=rand*(B2-B1)+B1;
q1(4)=1/(B2-B1);
%space-time interaction parameter
step_walk=V_step_walk(5);
B1=max(M_prior(5,1),m0(5)-step_walk);
B2=min(M_prior(5,2),m0(5)+step_walk);
m1(5)=rand*(B2-B1)+B1;
q1(5)=1/(B2-B1);
%noise
step_walk=V_step_walk(6);
B1=max(M_prior(6,1),m0(6)-step_walk);
B2=min(M_prior(6,2),m0(6)+step_walk);
m1(6)=rand*(B2-B1)+B1;
q1(6)=1/(B2-B1);
%advection velocity
step_walk=V_step_walk(10);
B1=max(M_prior(10,1),m0(10)-step_walk);
B2=min(M_prior(10,2),m0(10)+step_walk);
m1(10)=rand*(B2-B1)+B1;
q1(10)=1/(B2-B1);
%advection direction
step_walk=V_step_walk(11);
B1=max(M_prior(11,1),m0(11)-step_walk);
B2=min(M_prior(11,2),m0(11)+step_walk);
m1(11)=rand*(B2-B1)+B1;
q1(11)=1/(B2-B1);
%a1
step_walk=V_step_walk(8);
B1=max(M_prior(8,1),m0(8)-step_walk);
B2=min(M_prior(8,2),m0(8)+step_walk);
m1(8)=rand*(B2-B1)+B1;
q1(8)=1/(B2-B1);
%a2
step_walk=V_step_walk(9);
B1=max(M_prior(9,1),m0(9)-step_walk);
B2=min(M_prior(9,2),m0(9)+step_walk);
m1(9)=rand*(B2-B1)+B1;
q1(9)=1/(B2-B1);
end
end