-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_model.py
133 lines (115 loc) · 5.17 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python
# coding: utf-8
# In[1]:
from tensorflow.keras.utils import Sequence
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, CSVLogger, TensorBoard
import matplotlib.pyplot as plt
from tensorflow.keras.models import Model, load_model
import tensorflow as tf
import numpy as np
import pandas as pd
import math
AAINDEX = {'A': 1, 'R': 2, 'N': 3, 'D': 4, 'C': 5, 'Q': 6, 'E': 7, 'G': 8, 'H': 9, 'I': 10, 'L': 11,
'K': 12, 'M': 13, 'F': 14, 'P': 15, 'S': 16, 'T': 17, 'W': 18, 'Y': 19, 'V': 20}
MAXLEN = 2000
def to_onehot(seq, start=0):
onehot = np.zeros((MAXLEN, 21), dtype=np.int32)
l = min(MAXLEN, len(seq))
for i in range(start, start + l):
onehot[i, AAINDEX.get(seq[i - start], 0)] = 1
onehot[0:start, 0] = 1
onehot[start + l:, 0] = 1
return onehot
class DFGenerator(Sequence):
def __init__(self, df, terms_dict, nb_classes, batch_size):
self.start = 0
self.size = len(df)
self.df = df
self.batch_size = batch_size
self.nb_classes = nb_classes
self.terms_dict = terms_dict
def __len__(self):
return np.ceil(len(self.df) / float(self.batch_size)).astype(np.int32)
def __getitem__(self, idx):
batch_index = np.arange(idx * self.batch_size, min(self.size, (idx + 1) * self.batch_size))
df = self.df.iloc[batch_index]
data_onehot = np.zeros((len(df), MAXLEN, 21), dtype=np.float32)
labels = np.zeros((len(df), self.nb_classes), dtype=np.int32)
for i, row in enumerate(df.itertuples()):
seq = row.sequences
onehot = to_onehot(seq)
data_onehot[i, :, :] = onehot
for t_id in row.prop_annotations:
if t_id in self.terms_dict:
labels[i, self.terms_dict[t_id]] = 1
self.start += self.batch_size
return (data_onehot, labels)
def __next__(self):
return self.next()
def reset(self):
self.start = 0
def next(self):
if self.start < self.size:
batch_index = np.arange(
self.start, min(self.size, self.start + self.batch_size))
df = self.df.iloc[batch_index]
data_onehot = np.zeros((len(df), MAXLEN, 21), dtype=np.int32)
labels = np.zeros((len(df), self.nb_classes), dtype=np.int32)
for i, row in enumerate(df.itertuples()):
seq = row.sequences
onehot = to_onehot(seq)
data_onehot[i, :, :] = onehot
for t_id in row.prop_annotations:
if t_id in self.terms_dict:
labels[i, self.terms_dict[t_id]] = 1
self.start += self.batch_size
return (data_onehot, labels)
else:
self.reset()
return self.next()
# In[6]:
def plot_curve(history):
plt.figure()
x_range = range(0,len(history.history['loss']))
plt.plot(x_range, history.history['loss'],'bo',label='Training loss')
plt.plot(x_range, history.history['val_loss'],'b',label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
def train_model(model_path, data_path, valid_path='none', epochs=5, batch_size=32, data_size=100000, terms_file='data/terms.pkl'):
model = load_model(model_path)
# model.summary()
checkpointer = ModelCheckpoint(filepath=model_path, verbose=1, save_best_only=True)
earlystopper = EarlyStopping(monitor='val_loss', patience=3, verbose=1)
tbCallBack = TensorBoard(log_dir="./model", histogram_freq=1,write_grads=True)
logger = CSVLogger('result/train_log.txt')
with open(terms_file,'rb') as file:
terms_df = pd.read_pickle(file)
terms = terms_df['terms'].values.flatten()
terms_dict = {v: i for i, v in enumerate(terms)}
nb_classes = len(terms)
with open(data_path, 'rb') as file:
data_df = pd.read_pickle(file)
if len(data_df)> data_size:
data_df = data_df.sample(n=data_size)
if valid_path =='none':
valid_df = data_df.sample(frac=0.2)
train_df = data_df[~data_df.index.isin(valid_df.index)]
else:
train_df = data_df
with open(valid_path, 'rb') as file:
valid_df = pd.read_pickle(file)
valid_steps = int(math.ceil(len(valid_df) / batch_size))
train_steps = int(math.ceil(len(train_df) / batch_size))
train_generator = DFGenerator(train_df, terms_dict, nb_classes, batch_size)
valid_generator = DFGenerator(valid_df, terms_dict, nb_classes, batch_size)
# 训练模型
his = model.fit(
train_generator,
steps_per_epoch=train_steps,
epochs=epochs,
validation_data=valid_generator,
validation_steps=valid_steps,
max_queue_size=batch_size,
workers=12,
callbacks=[tbCallBack, logger, checkpointer, earlystopper])
plot_curve(his)