-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffusion_utils.py
46 lines (41 loc) · 1.71 KB
/
diffusion_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import BaseAsyncClass
from diffusers import StableDiffusionPipeline
import tokens
import torch
from flask_sqlalchemy import SQLAlchemy
from models import Image
class DiffusionUtils():
def __init__(self):
self.pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=tokens.HFTOKEN).to("cuda")
self.pipe.safety_checker = dummy_checker
def make(self,prompt, num_of_images, db_commit_callback):
files = []
OUTDIR = 'generated/'
PROMPT = prompt
NUM_ITERS = num_of_images
SEED = 0
SCALE = 10.5
WIDTH = 512
HEIGHT = 512
STEPS = 250
ORIG_SEED = SEED
generator = torch.Generator(device="cuda")
latents = None
seeds = []
print(prompt)
for i in range(NUM_ITERS):
torch.cuda.empty_cache()
seed = generator.seed()
seeds.append(seed)
generator = generator.manual_seed(seed)
image_latents = torch.randn((1, self.pipe.unet.in_channels, HEIGHT // 8, WIDTH // 8), generator = generator, device = "cuda")
latents = image_latents if latents is None else torch.cat((latents, image_latents))
image = self.pipe(PROMPT, num_inference_steps=STEPS, width=int(WIDTH), height=int(HEIGHT), guidance_scale=SCALE,
generator=generator, latents = latents)["sample"][0]
uri = f'{OUTDIR}/{str(0)}_scale_{SCALE}_steps_{STEPS}_seed_{seeds[i]}.png'
image.save(uri)
files.append(uri)
db_commit_callback(uri, PROMPT)
torch.cuda.empty_cache()
return files
def dummy_checker(images, **kwargs): return images, False